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Abstract

In this thesis, we propose novel stationary time series models that can be used when the

observations are taken on irregularly spaced times. First, we present a model with a first-

order moving average structure, and then we generalized it to consider an autoregressive

component. We called the first model irregularly spaced first-order moving average and

the second one irregularly spaced first-order autoregressive moving average. Their defini-

tions and properties are established. We present their state-space representations and their

one-step linear predictors. The behavior of the maximum likelihood estimator is studied

through Monte Carlo experiments. Illustrations are presented with real and simulated data.

Keywords: Moving average; Autoregressive; Time-dependent data; General backward

continued fraction.
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Chapter 1

Introduction

In statistics, time series analysis establishes a principal tool when we want to study ob-

servations that naturally are dependent. For instance, a researcher might be interested in

studying the spatial behavior of air carbon monoxide concentration levels in a city, or he

might also be interested in understanding the stock price temporal dynamic of a financial

asset in a stock market. In both cases, space and time are important factors that induce

dependence between observations. The main objective of this analysis is to understand the

nature of such dependence.

Nowadays, in order to study time series, there are many methods assume time series

are regularly spaced, that is, the interval between observations is constant over time (see,

e.g., Brockwell and Davis, 1991; Hamilton, 1994; Box et al., 2016). However, there are

few contributions to treat irregularly spaced time series, which are frequently observed in

fields such as climatology, economics, finance, astronomy, medical sciences, geophysics,

among others. For example, Mudelsee (2014) mentions that conventional time series anal-

ysis largely ignored irregularly spaced structures that climate time series has to take into

account.

According to Jones (1985), irregularly spaced time series can occur in two different

ways. First, data can be regularly spaced with missing observations. Second, data can

be truly irregularly spaced with no underlying sampling interval. Techniques considering

time series in the presence of missing data are useful in the first case (see, e.g., Parzen,

1



CHAPTER 1. INTRODUCTION 2

1963; Jones, 1980; Dunsmuir, 1983; Reinsel and Wincek, 1987). Nevertheless, these tech-

niques can not be applying if data are really irregularly spaced. This case usually has been

treated through two approaches. On the one hand, we can transform irregularly spaced time

series in regularly spaced time series through interpolation and to use conventional tech-

niques. Adorf (1995) provides a summary of such transformations, which are frequently

used to analyze astronomic data. However, interpolation methods typically produce bias

(for instance, over smoothing), changing the dynamic of the process. On the other hand,

irregularly spaced time series can be treated as discrete realizations of a continuous stochas-

tic process (see, e.g., Robinson, 1977; Parzen, 1984; Thornton and Chambers, 2013), but

continuous time series models tend to be complicated (mostly due to the difficulty of esti-

mating and evaluating them from discretely sampled data). Moreover, we need to handle

embedding and aliasing problems1 that are not easy to solve. The emphasis of this approach

has been mainly to model autoregressive moving averages process. However, a stationary

condition of these models is that autoregressive order must be strictly greater than moving

average order. Thus, a stationary continuous-time first-order moving average process or a

stationary continuous-time first-order autoregressive moving average process is not viable,

at least for a real-valued process (Chan and Tong, 1987). Consequently, in this thesis, we

propose two novel models called irregularly spaced first-order moving average and irregu-

larly spaced first-order autoregressive moving average that allow us to treat either moving

averages and autoregressive moving averages structures with irregularly spaced times.

In this chapter, we give an account of some of the main concepts in time series, that

will be used to set up notation and basic ideas about the stochastic process. We start the

discussion introducing concepts such as irregularly spaced stochastic process, distributional

and constructionist viewpoint of stochastic process, Gaussian process, strictly and weakly

stationary process, ergodicity, and mixing properties. Later, we introduce two models with

first-order autoregressive structures. Finally, we present the properties of these models.

1Embedding happens when different continuous-time processes can look the same when observed dis-
cretely. Aliasing occurs when the variability due to higher frequencies is mapped into an interval defined by
the sampling process (Tómasson, 2015).
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1.1 Basic ideas and terminology

1.1.1 Irregularly spaced stochastic process

Let (Ω,ℑ,P) be a probability space, T be any set, and RT be the product space generated

by taking a copy of R for each element of T. Davidson (1994) defines a stochastic process

as a measure mapping x : Ω 7→ RT, where

x(ω) = {Xτ (ω) ,τ ∈ T}.

T is called the index set, and the random variable Xτ(ω) is called a coordinate of the process

or trajectory. In the case where T is an interval of R such as T= (0,∞) or T= (−∞,∞), x

is called a continuous-index stochastic process. On the other hand, when T is a countable

subset of R, x becomes {· · · ,Xt−1,Xt0,Xt1, · · ·} and it is called a discrete-index stochastic

process. Given the equipotency of Z and N, it will suffice consider only {Xtn}n≥1.

Now, like Robinson (1977), consider T′ = {t1, t2, t3, . . .} as a set such that its consec-

utive differences ∆n+1 = tn+1− tn, for n ≥ 1, are strictly positive, uniformly bounded and

bounded away from zero. Thus, there are ∆L > 0 and ∆U <∞ such that ∆L≤ ∆n+1≤ ∆U for

all n. Without loss of generality, we suppose ∆L = 1 (otherwise, we can rescale each ∆n+1

by minn ∆n+1). These conditions are compatibles with any physical recorder and determine

T′ as a discrete (and therefore countable) subset of R. We shall call x′ = {Xτ ,τ ∈ T′} an

irregularly spaced stochastic process and we assume that the pattern of irregular spacing is

independent to the stochastic properties of the process. When T′ is an arithmetic progres-

sion2, with ∆n+1 = 1 for n≥ 1, the process x′ is called a regularly spaced stochastic process

and no relevant information is lost by consider T′ = N+. An irregularly (or unequally

or unevenly) spaced time series is a finite realization of an irregularly spaced stochastic

process.

2An arithmetic progression is a sequence of numbers such that the difference of any two successive mem-
bers is a constant.
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1.1.2 Two ways to describe a stochastic process

Consider any n element τ1,τ2, . . . ,τn in T. According to Parzen (1962), one way of de-

scribing a stochastic process, x, is to specify the joint distribution of {Xτ1, . . . ,Xτn} for all n.

On the other hand, another way of describing a stochastic process is to give a formula for

the value Xτ of the process at each point τ in terms of a family of random variables whose

probability law is known. Viewing a stochastic process via the joint distribution of a finite

subset of the components is called the distributional viewpoint. On the other hand, viewing

a stochastic process as functions of other processes (often simpler process like a family of

iid random variables) is called the constructionist viewpoint (Spanos, 1999).

1.1.3 Gaussian process and their existence

Following to Azencott and Dacunha-Castelle (1986), a stochastic process x is called Gaus-

sian if for every finite subset {τ1,τ2, . . . ,τn} of T the joint distribution of {Xτ1,Xτ2 , . . . ,Xτn}
is Gaussian. The following Proposition was taken from Azencott and Dacunha-Castelle

(1986, Proposition 2.4.2, pp. 15).

Proposition 1. Let m : T→R be an arbitrary function, and let Γ : T×T→R be a function

satisfying the following two conditions. First, Γ(τ, ι) = Γ(ι ,τ) for any τ, ι ∈ T. Second, if

{τ1,τ2, . . . ,τn} is any finite T set, the matrix [Γ(τi,τ j)] is nonnegative definite. Then there

is a real-valued Gaussian process x = {Xτ ,τ ∈ T} with mean m and covariance Γ. This

process is unique up to equivalence.

1.1.4 Strictly and weakly stationary process

If the probabilistic structure of a process is invariant under a shift of the time origin, then the

process is strictly stationary (Priestley, 1981). So, for any set {τ1,τ2, . . . ,τn} of T, the joint

distribution of {Xτ1,Xτ2 , . . . ,Xτn} must remain unaltered if we shift each element by the

same amount. The process x is said to be weakly stationary if, for any subset {τ1,τ2, . . . ,τn}
of T, all the joint moments up to order 2 of {Xτ1 ,Xτ2, . . . ,Xτn} exist and remain invariant

under a shift. Thus, a Gaussian process is a strictly stationary process if it is a weakly

stationary processs (Cramér and Leadbetter, 1967).
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1.1.5 Ergodicity and mixing

Following Spanos (1999), ergodicity refers to the property of a stationary stochastic pro-

cess, which will enable us to use a single trajectory in order to estimate reliably the mo-

ments of the distribution underlying the stochastic process in question. According to David-

son (1994), mixing means that its random variables with indices far apart are almost inde-

pendent.

The following results were taken from Stout (1974).

Lemma 2 (Lemma 3.5.8, pp. 182). Let {Xtn}n≥1 be independent identically distributed.

Then, {Xtn}n≥1 is stationary ergodic.

Theorem 3 (Theorem 3.5.8, pp. 182). Let {Xtn}n≥1 be stationary ergodic and f be a

mesurable function f : R∞→ R. Let Ytn = f (Xtn,Xtn+1, . . .) define {Ytn}n≥1. Then, {Ytn}n≥1

is stationary ergodic.

On the other hand, according to Spanos (1999), the mixing (strong) condition are

stronger than ergodicity in the sense that when we impose stationarity on a stochastic pro-

cess, then the mixing condition implies ergodicity. Following Hannan (1970), a sequence

of independent identically distributed random variables with mean zero and finite variance

is mixing. Also, we have the following result from the same author.

Theorem 4 (Theorem 3, pp. 204). If {Xtn}n∈Z is given by

Xtn =
∞

∑
j=−∞

a jYtn− j ,
∞

∑
j=−∞

a2
j < ∞,

where {Ytn}n∈Z are independent and identically distributed then {Xtn}n∈Z is mixing and

therefore ergodic.

1.2 An irregularly spaced first-order autoregressive pro-

cess

Robinson (1977) considers the continuous-time first-order autoregressive model sam-

pled at known discrete times. Let {εtn}n∈Z be independent random variables each
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N(0,σ2
0 φ(α0;∆n)) with σ2

0 > 0, α0 < 0, ∆n = tn− tn−1 and φ(α;∆) = (e2α∆−1)/2α. Then,

the discrete-time model of Robinson is

Xtn = eα0∆nXtn−1 + εtn.

This model may be thought of as a first-order autoregression with time-varying coefficient

and heteroscedastic errors. It is essential to stand out that the only solution of this model

for which E(X2
tn)< ∞, all n, is

Xtn =
∞

∑
j=0

eα0(tn−tn− j)εtn− j ,

and the covariance is

E[XtmXtn] =−
σ2

0
2α0

eα0(tn−tm), m≤ n.

Moreover, let Xτ be observed at points t0, t1, . . . , tN . The log-likelihood is

−1
2

N log2πσ
2− 1

2

N

∑
n=1

logφ(α;∆n)−
1
2

N

∑
n=1

(xtn− eα∆nxtn−1)
2

σ2φ(α;∆n)
,

where α and σ2 are any admissible parameter values and the concentrated criterion func-

tion is

qN(α) = log σ̂
2
N(α)+

1
N

N

∑
n=1

logφ(α;∆n),

with

σ̂
2
N(α) =

1
N

N

∑
n=1

(xtn− eα∆nxtn−1)
2

φ(α;∆n)
.
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The maximun likelihood estimate of α0, α̂N , is the value minimizing qN(α) and the esti-

mate of σ2
0 is σ̂2

N = σ̂2
N(α̂N). Robinson proves the strong law of large numbers and central

limit theorem for α̂N and σ̂2
N . Consider the following conditions

• qN(α) is minimized over a closed interval A = [αL,αU ], αL > −∞, αU < ∞ and

α0 ∈A .

• ∆L > 0, ∆U < ∞, and ∆L ≤ ∆n ≤ ∆U for all −∞ < n < ∞.

• For

ãN(α) =
1
N

N

∑
n=1

log
φ(α0;∆n)

φ(α;∆n)
, b̃N(α) =

σ2
0

N

N

∑
n=1

φ(α0;∆n)

φ(α;∆n)
,

c̃N(α) =
σ2

0
−2α0N

N

∑
n=1

ζ (α;∆n)
2

φ(α;∆n)
, ζ (α;∆) = eα0∆− eα∆,

the limits

lim
N→∞

ãN(α) = a(α), lim
N→∞

b̃N(α) = b(α), lim
N→∞

c̃N(α) = c(α), (1.1)

exist, and the convergence is uniform over A .

Under these conditions, Robinson proof that

(α̂N , σ̂
2
N)→ (α0,σ

2
0 ) a.s.

Next, consider the additional conditions

• α0 6= αL,αU .
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• For,

ω̃N(α) =
1
N

N

∑
n=1

∂ logφ(α;∆n)

∂α
, χ̃N(α) =

1
N

N

∑
n=1

(
∂ logφ(α;∆n)

∂α

)2

,

ψ̃N(α) =
1
N

N

∑
n=1

∆2
ne2α∆n

φ(α;∆n)
,

the limits

lim
N→∞

ω̃N(α) = ω(α), lim
N→∞

χ̃N(α) = χ(α), lim
N→∞

ψ̃N(α) = ψ(α),

exist, and the convergence is uniform in some neighborhood of α0.

Under the above conditions, Robinson proof that

N1/2

([
α̂N

σ̂2
N

]
−

[
α0

σ2
0

])
d→ Z,

where

Z∼ N

([
0

0

]
,

[
2λ (α0)

−1 2σ2
0 ω(α0)λ (α0)

−1

2σ2
0 ω(α0)λ (α0)

−1 2σ4
0 (χ(α0)−ψ(α0)/α0)λ (α0)

−1

])

with λ (α) = χ(α)−ω(α)2−ψ(α)/α.

Later, Eyheramendy et al. (2018) introduce the so-called irregular autoregressive (IAR)

model that allows for Gaussian and non-Gaussian- distributed data, leading to increase

flexibility. This model is defined by

Xtn = φ
tn−tn−1Xtn−1 +σ

√
1−φ 2(tn−tn−1)ζtn for n ∈ Z,

where 0 < φ < 1, σ2 > 0 and {ζtn}n∈Z is a white noise sequence with zero mean and
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unit variance. Note that E(Xtn) = 0 and Var(Xtn) = σ2 for all n. Further, the autocovariance

function is Cov(Xtk ,Xt j)=σ2φ tk−t j for k≥ j. Hence, the IAR process correspond to weakly

stationary process. Also, if {ζtn}n∈Z is an independent and identically distributed sequence

of random variables with mean zero and unit variance and if tn− tn− j ≥ Clog j, as j→ ∞,

where C is a positive constant that satisfies Clogφ 2 < −1, then there is a solution to the

IAR process and the sequence is strictly stationary and ergodic.



Chapter 2

An irregularly spaced first-order moving
average process

A model for irregularly spaced time series can take place in many areas. Often, when we

have an irregularly spaced time series, we treat them as a discrete realization of a continuous

stochastic process. However, continuous time series models tend to be complicated (mostly

due to the difficulty of estimating and evaluating them from discretely sampled data). Here,

we need to handle embedding and aliasing problems that are not easy to solve. Additionally,

the emphasis of this approach has been mainly to model autoregressive moving averages

process. Nevertheless, a stationary condition of these processes is that autoregressive order

must be strictly greater than moving average order. Then, a stationary continuous-time

first-order moving average process is not viable, at least for a real-valued process (Chan

and Tong, 1987). In this chapter, we propose a novel model called an irregularly spaced

first-order moving average model that allows us to treat moving averages structures with

irregularly spaced times.

The remainder of the Chapter 2 is organized as follows. In Section 2.2, we present

a novel class of stochastic processes called irregularly spaced first-order moving average

model for the treatment and analysis of unevenly spaced time series. In Section 2.3, we give

the state-space representation of the model. In Section 2.4 we provide the one-step linear

predictors and the mean squared errors. The maximum likelihood and bootstrap estimation

methods are introduced in Sections 2.5 and 2.6, respectively. We study the behavior of the

10
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maximum likelihood and bootstrap estimators via Monte Carlo in Section 2.7. Finally, we

present a medical illustration in Section 2.8.

2.1 Introduction

In this section, we would like to build a stationary stochastic process having a moving

average structure that allows us to consider irregularly spaced times. We suppose that the

pattern of irregular spacing is independent of the stochastic process properties.

Consider the Proposition 1 and let T′ = {t1, t2, t3, . . .} be a set such that its consecutive

differences ∆n+1 = tn+1− tn, for n ≥ 1, are uniformly bounded and bounded away from

zero. Now, let m : T′ → R be a function such that m(tn) = 0, for any tn ∈ T′. Next, let

Γ : T′×T′→ R be a function such that, for any tn, ts ∈ T′,

Γ(tn, ts) =


γ0, |n− s|= 0,

γ1,∆max{n,s}, |n− s|= 1,

0, |n− s| ≥ 1.

Note that Γ can be represented by an infinite real tridiagonal matrix as

Γ =



γ0 γ1,∆2 0 0 · · ·
γ1,∆2 γ0 γ1,∆3 0

0 γ1,∆3 γ0 γ1,∆4

0 0 γ1,∆4 γ0
... . . .


. (2.1)

Let Γn be the n×n truncation of Γ and assume γ1,∆ j 6= 0, for j = 2, . . . ,n. From Appendix

A.1, Γn is positive definite if γ0 > 0 and (γ1,∆ j/γ0)2 ≤ 1/4 for j = 2, . . . ,n. Thus, if

γ0 > 0 and
(

γ1,∆n+1

γ0

)2

≤ 1/4, for n≥ 1, with γ1,∆n+1 6= 0, (2.2)
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then there is a stationary Gaussian process {Xtn , tn ∈ T′}, unique up to equivalence, with

mean 0 and covariance Γ. We called this process an irregularly spaced first-order moving

average process of general form. In the following section, we are going to give particular

expressions to γ0 and γ1,∆n+1 such that satisfying (2.2). The goal is to obtain a station-

ary irregularly spaced stochastic process for which we can get the conventional first-order

moving average process when ∆n+1 = 1 for all n≥ 1.

2.2 An Irregular spaced first-order Moving Average

model

Next, we define a novel class of stochastic process called Irregularly spaced first-order

Moving Average (IMA) process. The definition is made from either a distributional and

constructionist viewpoint. Later, we present process properties.

2.2.1 Distributional viewpoint

In (2.1), γ0 and γ1,∆n+1 , for n ≥ 1, represent variance and first-order covariances, respec-

tively. In order to satisfy (2.2), we define the variance as γ0 = σ2(1+θ 2) and the first-order

covariances as γ1,∆n+1 = σ2θ ∆n+1 , where σ2 > 0 and 0 < θ < 1. Hence, we obtain a partic-

ular stationary irregularly spaced stochastic process with covariance matrix

Γ = σ
2



1+θ 2 θ ∆2 0 0 · · ·
θ ∆2 1+θ 2 θ ∆3 0

0 θ ∆3 1+θ 2 θ ∆4

0 0 θ ∆4 1+θ 2

... . . .


(2.3)

which contains the conventional first-order moving average process as a special case. We

call this Gaussian process an irregularly spaced first-order moving average process.
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Definition 5 (IMA–distributional viewpoint). Let T′ = {t1, t2, t3, . . .} be a set such that its

consecutive differences ∆n+1 = tn+1− tn, for n ≥ 1, are uniformly bounded and bounded

away from zero. The IMA process {Xtn, tn ∈T′} is defined as a Gaussian process with mean

0 and covariance (2.3) with σ2 > 0 and 0 < θ < 1. We say that {Xtn, tn ∈ T′} is an IMA

process with mean µ if {Xtn−µ, tn ∈ T′} is an IMA process.

2.2.2 Constructionist viewpoint

Now, as is usual, we would like to specify the IMA process as a function of other (often

simpler) stochastic processes. This approach is known as a constructionist viewpoint of the

process (Spanos, 1999). Appendix A.1 contains details about how we built this model.

Definition 6 (IMA–constructionist viewpoint). Let {εtn}n≥1 be independent random

variables that follow a Gaussian distribution N(0,σ2cn(θ)) with σ2 > 0, 0 < θ < 1,

c1(θ) = 1+θ 2 and

cn(θ) = 1+θ
2− θ 2∆n

cn−1(θ)
for n≥ 2,

where ∆n = tn− tn−1. The process {Xtn, tn ∈ T′}, with T′ as was defined in Definition 5, is

said to be an IMA process if Xt1 = εt1 and, for n≥ 2,

Xtn = εtn +
θ ∆n

cn−1(θ)
εtn−1. (2.4)

We say that {Xtn, tn ∈ T′} is an IMA process with mean µ if {Xtn − µ, tn ∈ T′} is an IMA

process. Additionally, the general backward continued fraction, cn(θ), satisfies (proof in

Appendix A.2)

1 < cn(θ)< 2 for all n.
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2.2.3 Process properties

If Xn = [Xt1, . . . ,Xtn]
′ is a random vector from an IMA process, then Xn is a Gaussian

random vector with mean mn = 0 and tridiagonal covariance matrix

Γn = σ
2



1+θ 2 θ ∆2 · · · 0 0

θ ∆2 1+θ 2 · · · 0 0
...

... . . . ...
...

0 0 · · · 1+θ 2 θ ∆n

0 0 · · · θ ∆n 1+θ 2


.

Thus, the IMA process is a weakly stationary Gaussian process and therefore strictly sta-

tionary. Further, since {εtn}n≥1 is ergodic (see Chapter 1, Lemma 2), and Xtn = f (εtn,εtn−1),

with f a measurable function, then {Xtn}n≥1 is also ergodic (see Chapter 1, Theorem 3). In

fact, since {εtn}n≥1 is mixing and Xtn is a measurable function of it, then {Xtn}n≥1 is mixing

and therefore ergodic (see Chapter 1, Theorem 4).

2.3 State-space representation

Now, using the same notation given in Definition 6, we provide a state-space representation

of the model (2.4). This representation has the lowest dimension of the state vector and is

given by

αtn+1 =
θ ∆n+1

cn(θ)
εtn,

Xtn = αtn + εtn

for n ≥ 1 with αt1 = 0. Note that, in this representation, the transition and measurement

equation disturbances are correlated. As is suggested by Harvey (1989), to get a new system

on which these disturbances are uncorrelated, we use
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αtn+1 =−
θ ∆n+1

cn(θ)
αtn +

θ ∆n+1

cn(θ)
Xtn, (2.5)

as the transition equation. The inclusion of Xtn in (2.5) does not afect Kalman filter, as Xtn

is known at time tn.

2.4 Prediction

The one-step linear predictors are defined as X̂t1 = 0 and

X̂tn+1 = φn1Xt1 + · · ·+φnnXtn, n≥ 1,

where φn1, . . . ,φnn satisfy the prediction equations

Γnφ n = γn. (2.6)

In terms of the IMA process we have,

Γn = σ
2



1+θ 2 θ ∆2 0 · · · 0

θ ∆2 1+θ 2 θ ∆3
...

0 θ ∆3
. . . . . . 0

...
. . . 1+θ 2 θ ∆n

0 · · · 0 θ ∆n 1+θ 2


, φ n =


φn1

φn2
...

φnn

 andγn = σ
2


0

0
...

θ ∆n+1

 .

The mean squared errors are νn+1 = E[(Xtn+1− X̂tn+1)
2] = γ0− γ ′nΓ

−1
n γn with ν1 = γ0.

From Brockwell and Davis (1991, Proposition 5.1.1, pp.167), if γ0 > 0 and γh,∆n+1 → 0

as h→ ∞, for all n ≥ 1, then the covariance matrix Γn is non-singular for every n. Note

that, in particular, the covariance structure of the IMA process satisfies these conditions.

Hence, there is exactly one solution of 2.6 which is given by

φ n = Γ
−1
n γn.
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An useful algorithm for solve the prediction equations is known as Innovations al-

gorithm (Brockwell and Davis, 1991). The innovations algorithm gives the coefficients

of Xtn − X̂tn, . . . ,Xt1 − X̂t1 , in the alternative expansion X̂tn+1 = ∑
n
j=1 θn j(Xtn+1− j − X̂tn+1− j).

Hence, using this algorithm (see Appendix A.3) we have

θn, j = 0, 2≤ j ≤ n,

θn,1 =
γ1,∆n+1

νn
and

υn+1 = γ0−θ
2
n,1υn = γ0−

γ2
1,∆n+1

νn
, with υ1 = γ0.

Specifically, for the IMA process, we obtain X̂t1(θ) = 0 with mean squared error σ2c1(θ)

and

X̂tn+1(θ) =
θ ∆n+1

cn(θ)
(Xtn− X̂tn(θ)), n≥ 1,

with mean squared errors σ2cn+1(θ).

2.5 Maximum likelihood estimation

Let Xt be observed at points t1, . . . , tN. The criterion function is

CN(θ ,σ
2) = logσ

2 +
1
N

N

∑
n=1

logcn(θ)+
1
N

N

∑
n=1

(Xtn− X̂tn(θ))
2

σ2cn(θ)
.

Holding fixed θ , we can optimize CN(θ ,σ
2) with respect to σ2. The corresponding condi-

tional estimate of σ2 is

σ
2
N(θ) =

1
N

N

∑
n=1

(Xtn− X̂tn(θ))
2

cn (θ)
.
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The concentrated criterion function is

qN(θ) =CN(θ ,σ
2
N(θ)) = logσ

2
N(θ)+

1
N

N

∑
n=1

logcn(θ).

Let θ0 and σ2
0 be any admissible parameter values. The maximun likelihood estimate of

θ0, θ̂N, is the value minimizing qN(θ) and the estimate of σ2
0 is σ̂2

N = σ2
N(θ̂N). Henceforth,

we could omit N in the estimates when the notation is overload.

2.6 Bootstrap estimation

To carry out statistical inference it is necessary to be able to derive the distributions of the

statistics used for the estimation of the parameters from the data. If N is small, or if the

parameters are close to the boundaries, the asymptotic approximations can be quite poor

(Shumway and Stoffer, 2017). Also, in the irregularly spaced time case, the asymptotic ap-

proximations need to establish strong conditions such as (1.1) which are difficult to meet.

To overcome these difficulties and to can get approximations of the finite sample distribu-

tions, we might use the bootstrap method. The idea in time series is to fit a suitable model

to the data, to construct residuals from the fitted model, and then to generate new series by

incorporating random samples from the residuals into the fitted model. The residuals are

typically recentred to have the same mean as the innovations of the model.

Following to Bose (1990), for n ≥ 2, define the estimated innovations or one-step

prediction residuals, as

etn =
n−1

∑
j=0

(−1) j ∏
n
k=n− j+1 θ ∆k

∏
n−1
l=n− j cl(θ)

Xtn− j

and et1 = Xt1 . Using the structure of the process and assuming that the fitted model is, in

fact, the true model for the data we have

etn = εtn +(−1)n−1 ∏
n
k=1 θ ∆k

∏
n−1
l=0 cl(θ)

εt0.
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Hence etn and εtn are close for all large n if 0 < θ < 1, which shows that resampling is

proper in this situation.

Next, we apply the bootstrap method to estimate θ0 in the IMA process with σ2
0 = 1.

Let Xt be observed at points t1, . . . , tN and consider θ̂N as the respective MLE estimation.

The standardized estimated innovations are

es
tn =

Xtn− X̂tn(θ̂N)√
cn(θ̂N)

,

for n = 2, . . . ,N. The so-called model-based resampling might proceed by equi-

probable sampling with replacement from centered residuals es
t2 − ē, . . . ,es

tN − ē, where

ē = ∑
N
n=2 es

tn/N−1, to obtain simulated innovations ζ ∗t1, . . . ,ζ
∗
tN , and then setting

X∗t1 =
√

c1(θ̂N)ζ
∗
t1,

X∗tn =
√

cn(θ̂N)ζ
∗
tn +

θ̂
∆n
N

cn−1(θ̂N)

√
cn−1(θ̂N)ζ

∗
tn−1

, for n = 2, . . . ,N.

Next, we estimate the parameters through ML assuming the data are X∗tn . Thus, we can

repeat this process a large number, B, of times generating a collection of bootstrapped pa-

rameter estimates. Then, we can approximate the finite sample distribution of the estimator,

θ̂N, from the bootstrapped parameter values.

2.7 Monte Carlo study

This section provides a Monte Carlo study. Our goal is to study the properties for Maximum

Likelihood (ML) and bootstrap estimators. We consider σ2
0 = 1, θ0 ∈ {0.1,0.5,0.9} and

N ∈ {100,500,1500}, where N represent the length of the serie. We simulated M = 1000

trajectories, {Sm}M
m=1, and estimated θ0. For each set up, we regard regular as well as

irregular spaced times t1, . . . , tN, where tn− tn−1
ind∼ exp(λ = 1), for n = 2, . . . ,N. In Figure
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Figure 2.1: IMA trajectory example with θ0 = 0.5, σ2
0 = 1 and N = 100. On the bottom,

we found the tick marks of irregularly spaced times.

2.1, we present an IMA trajectory example with the tick marks of irregularly spaced times.

Let θ̂ MLE
m be the ML estimation and ŝe(θ̂ MLE

m ) be the estimated standar error for the

m-th trajectory. The estandar error is estimated by curvature of the likelihood surface at

θ̂ MLE
m . We summarised the M maximum likelihood estimations by

θ̂
MLE =

1
M

M

∑
m=1

θ̂
MLE
m and ŝe(θ̂ MLE) =

1
M

M

∑
m=1

ŝe(θ̂ MLE
m ).
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On the other hand, for each trayectory, we simulated B = 500 bootstrap trayectories

represented by {{Sm,b}B
b=1}M

m=1. Then, we got {{θ̂ b
m,b}

B
b=1}M

m=1 (the ML estimations). The

bootstrap estimation and their estimated estandar errror are defined as

θ̂
b
m =

1
B

B

∑
b=1

θ̂
b
m,b and ŝe2(θ̂ b

m) =
1

B−1

B

∑
b=1

(θ̂ b
m,b− θ̂

b
m)

2,

for m = 1, . . . ,M. Finally, we summarised the M bootstrap estimations by

θ̂
b =

1
M

M

∑
m=1

θ̂
b
m and ŝe(θ̂ b) =

1
M

M

∑
m=1

ŝe(θ̂ b
m).

Besides, as a measure of the estimator performance, we used the Root Mean Squared Error

(RMSE), and the Coefficient of Variation (CV) estimated defined by

R̂MSE
θ̂ MLE = (ŝe(θ̂ MLE)2 + b̂ias

2
θ̂ MLE)

1/2, and

ĈV
θ̂ MLE =

ŝe(θ̂ MLE)∣∣θ̂ MLE
∣∣ ,

where b̂ias
θ̂ MLE = θ̂ MLE−θ0. Finally, we estimated the estimator variance by

s̃e2(θ̂ MLE) =
1

M−1

M

∑
m=1

(θ̂ MLE
m − θ̂

MLE)2.

Similarly, we defined R̂MSE
θ̂ b , ĈV

θ̂ b , b̂ias
θ̂ b and s̃e2(θ̂ b) for the bootstrap case. Figure

2.2 shows the workflow of the simulation study.

Below, we present the results for the irregularly spaced time case (see Appendix A.4

for the regularly spaced case). First, we show the simulated finite sample distributions for

maximum likelihood and bootstrap estimators. Second, for both estimators, we present

the measures of performance. Separately, we estimate the Monte Carlo Error (MCE) by
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IMA

S1

{θ̂ MLE
1 , ŝe(θ̂ MLE

1 )}

S1,1

{θ̂ b
1,1}

· · · S1,b · · ·

· · ·{θ̂ b
1,b}· · ·︸ ︷︷ ︸

{θ̂ b
1 , ŝe(θ̂ b

1 )}

S1,B

{θ̂ b
1,B}

· · · Sm · · ·

· · · {θ̂ MLE
m , ŝe(θ̂ MLE

m )} · · ·

Sm,1

{θ̂ b
m,1}

· · · Sm,b · · ·

· · ·{θ̂ b
m,b}· · ·︸ ︷︷ ︸

{θ̂ b
2 , ŝe(θ̂ b

2 )}

Sm,B

{θ̂ b
m,B}

SM

{θ̂ MLE
M , ŝe(θ̂ MLE

M )}

SM,1

{θ̂ b
M,1}

· · · SM,b · · ·

· · ·{θ̂ b
M,b}· · ·︸ ︷︷ ︸

{θ̂ b
M, ŝe(θ̂ b

M)}

SM,B

{θ̂ b
M,B}

Figure 2.2: General scheme of Monte Carlo study. Here, we show how we got the pairs
{θ̂ mle

m , ŝe(θ̂ mle
m )}M

m=1 and {θ̂ b
m, ŝe(θ̂ b

m)}M
m=1 for each trajectory.

asymptotic theory every simulation (see, Koehler et al., 2009), then we present the maxi-

mum value.

2.7.1 Finite sample distributions for ML and bootstrap estimators

In Figure 2.3, we present the simulated finite sample distributions for maximum likelihood

and bootstrap estimators. As we can see, both estimators have well behavior. They seem

unbiased and consistent. However, the smaller θ0, the more variables are the estimates.

2.7.2 Measures of performance-irregularly spaced case

As we can see in Table 2.1, for either maximum likelihood and bootstrap methods, the es-

timates have well behaviors. However, the smaller θ0, the more variables are the estimates.

Further, bias and uncertain are reduced when N increases. Both methods suitably esti-

mate the standard error. Also, the irregularly spaced times seem to increase the estimation

uncertainty (see the regularly spaced times case in Appendix A.4).
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Figure 2.3: Simulated finite sample distributions. On the left, the MLE case. On the right,
the bootstrap case.
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N θ0 θ̂ MLE ŝe(θ̂ MLE) s̃e(θ̂ MLE) b̂ias
θ̂ MLE R̂MSE

θ̂ MLE ĈV
θ̂ MLE

100
0.1 0.132 0.184 0.135 0.032 0.186 1.389
0.5 0.486 0.134 0.144 −0.014 0.135 0.276
0.9 0.893 0.051 0.055 −0.007 0.052 0.057

500
0.1 0.100 0.093 0.074 0.000 0.093 0.930
0.5 0.498 0.058 0.059 −0.002 0.058 0.117
0.9 0.899 0.022 0.022 −0.001 0.022 0.024

1500
0.1 0.097 0.056 0.050 −0.003 0.056 0.574
0.5 0.499 0.034 0.034 −0.001 0.034 0.068
0.9 0.900 0.012 0.012 0.000 0.012 0.014

N θ0 θ̂ b ŝe(θ̂ b) s̃e(θ̂ b) b̂ias
θ̂ b R̂MSE

θ̂ b ĈV
θ̂ b

100
0.1 0.167 0.136 0.098 0.067 0.151 0.811
0.5 0.473 0.140 0.139 −0.027 0.143 0.296
0.9 0.887 0.055 0.056 −0.013 0.056 0.062

500
0.1 0.111 0.069 0.059 0.011 0.070 0.626
0.5 0.496 0.059 0.059 −0.004 0.059 0.118
0.9 0.898 0.022 0.023 −0.002 0.022 0.024

1500
0.1 0.099 0.047 0.043 −0.001 0.047 0.474
0.5 0.498 0.034 0.033 −0.002 0.034 0.068
0.9 0.900 0.012 0.012 0.000 0.012 0.014

Table 2.1: Monte Carlo results for the irregularly spaced time case. The MCE estimated is
0.005.
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2.8 Application: lung function of an asthma patient

Belcher et al. (1994) analyzed measurements of the lung function of an asthma patient.

Times are measured mostly at 2 hour time intervals but with irregular gaps (see the unequal

spaced of tick marks in Figure 2.4). However, as was shown in Wang (2013), the series

trend component (obtained by decomposing original time series into trend, seasonal, and

irregular components via the Kalman smoother) exhibits structural changes after 100th ob-

servation. Thus, bellow, we use the first 100 observations to analyze such a phenomenon.

Below, we present the ML and bootstrap estimates with their respective estimated standard

errors.

θ̂
MLE = 0.853 ŝe(θ̂ MLE) = 0.069 σ̂

2
MLE = 258.286 ŝe(σ̂2

MLE) = 36.537

θ̂
b = 0.841 ŝe(θ̂ b) = 0.077 σ̂

2
b = 259.270 ŝe(σ̂2

b ) = 32.662

As we can see in Figure 2.4, the fit looks adequate. Also, the standardized residu-

als seem to follow a standard normal distribution. Here, we use a nonparametric density

estimation of the standardized residuals with normality reference bands (see Bowman and

Azzalini, 1997). Further, Figure 2.4 shows the ACF estimated and the results from a Ljung-

Box test. As we expected, the series complies with the test at the 5% significance level.

The results were obtained through our R package called istsa (see Appendix A.5).
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Figure 2.4: On the left-top, the lung function of an asthma patient with the predicted values
and their respective variability bands. On the right-top, nonparametric density estimation
of the standardized residuals with normality reference bands. In this case, we use θ̂ MLE.
On the bottom-left, the autocorrelation function estimated. On the bottom-right, the Ljung-
Box test for randomness.



Chapter 3

An irregularly spaced first-order
autoregressive moving average process

Often, when we have an irregularly spaced time series, we treat them as a discrete realiza-

tion of a continuous stochastic process. The emphasis of this approach has been mainly to

model autoregressive moving averages process. However, a stationary condition of these

processes is that autoregressive order must be strictly greater than moving average order.

Then, a stationary continuous-time first-order autoregressive moving average process is not

viable, at least for a real-valued process (Chan and Tong, 1987). In this chapter, we pro-

pose a novel model called an irregularly spaced first-order autoregressive moving average

process that allows us to treat first-order autoregressive moving averages structures with

irregularly spaced times.

The remainder of the Chapter 3 is organized as follows. In Section 3.2, we present

a novel class of stochastic processes called irregularly spaced first-order autoregressive

moving average model for the treatment and analysis of unevenly spaced time series. In

Section 3.3, we give the state-space representation of the model. In Section 3.4 we provide

the one-step linear predictors and the mean squared errors. The maximum likelihood and

bootstrap estimation methods are introduced in Sections 3.5 and 3.6, respectively. We

study the behavior of the maximum likelihood and bootstrap estimators via Monte Carlo in

Section 3.7. Finally, we present a geophysical illustration in Section 3.8.

26
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3.1 Introduction

In this section, we would like to build a stationary stochastic process having an autore-

gressive moving average structure that allows us to consider irregularly spaced times. We

suppose that the pattern of irregular spacing is independent of the stochastic process prop-

erties.

First, let {ζτ ,τ ∈ T′} be iid random variables each N(0,1) and define,

Xt1 = υ
1/2
1 ζt1 ,

Xtn+1 = φ
∆n+1Xtn +υ

1/2
n+1ζtn+1 +ϖnυ

1/2
n ζtn, for n≥ 1,

where 0 ≤ φ < 1, {υn}n≥1 and {ϖn}n≥1 are time-varying sequences that characterize the

moments of the process. Thus, for n≥ 1, we have E(Xtn) = 0,

Var(Xt1) = υ1,

Var(Xtn+1) = φ
2∆n+1Var(Xtn)+υn+1 +ϖ

2
n υn +2φ

∆n+1ϖnυn, and

Cov(Xtn,Xtn+k) =

φ ∆n+1Var(Xtn)+ϖnυn, k = 1,

φ ∆n+kCov(Xtn,Xtn+k−1), k ≥ 2.

By successive substitutions we have

Cov(Xtn,Xtn+k) = φ
tn+k−tn+1Cov(Xtn ,Xtn+1), for k ≥ 2.

In order to obtain a stationary process, we require that, for n≥ 1, Var(Xtn+1) =Var(Xt1) = γ0

and Cov(Xtn,Xtn+1) = γ1,∆n+1 with γ1,∆n+1 a function of ∆n+1 = tn+1− tn. Thus,
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φ
2∆n+1γ0 +υn+1 +ϖ

2
n υn +2φ

∆n+1ϖnυn = υ1 = γ0 and (3.1)

φ
∆n+1γ0 +ϖnυn = γ1,∆n+1 for n≥ 1. (3.2)

From (3.2), we have

ϖn =
γ1,∆n+1−φ ∆n+1γ0

υn
. (3.3)

If we replace (3.3) into (3.1), we obtain

υn+1 = γ0 +φ
2∆n+1γ0−2φ

∆n+1γ1,∆n+1−
(γ1,∆n+1−φ ∆n+1γ0)

2

υn
, with υ1 = γ0.

Now, let γ1,∆n+1 be φ ∆n+1γ0 +σ2θ ∆n+1 , for n≥ 1, where σ2 > 0 and 0≤ θ < 1. Therefore,

ϖn =
σ2θ ∆n+1

υn
and υn+1 = γ0(1−φ

2∆n+1)−2σ
2
φ

∆n+1θ
∆n+1− (σ2θ ∆n+1)2

υn
,

with υ1 = γ0. Further, let γ0 be σ2(1+2φθ+θ 2)/(1−φ 2). Consequently,

υn+1 = σ
2
(
(1+2θφ +θ 2)

(1−φ 2)
(1−φ

2∆n+1)−2φ
∆n+1θ

∆n+1− σ2θ 2∆n+1

υn

)

We need to show that, under the above variance and first-order covariances specifications,

we have υn+1 > 0, for all n. For this goal, let c1(φ ,θ) be (1+2φθ+θ 2)/(1−φ 2) and

cn+1(φ ,θ) =
(1+2θφ +θ 2)

(1−φ 2)
(1−φ

2∆n+1)−2φ
∆n+1θ

∆n+1− θ 2∆n+1

cn(φ ,θ)
.

Hence, note that υ1 = σ2c1(φ ,θ) and
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υn+1 = σ
2cn+1(φ ,θ).

Since 1≤ ∆n+1 ≤ ∆U , for all n, we have

cn+1(φ ,θ)≥ 1+θ
2 +2(θφ −φ

∆n+1θ
∆n+1)− θ 2∆n+1

cn(φ ,θ)
≥ cn+1(θ)> 0

because φθ ≥ φ ∆n+1θ ∆n+1 , for all n. Thus, we obtain the desired result. The sequence

cn+1(θ) is defined as in Chapter 2, Definition 6. Below, we define a novel stochastic process

having an autoregressive moving average structure that allows us to consider irregularly

spaced times.

3.2 An Irregular spaced first-order Autoregressive Mov-

ing Average model

We define a novel class of stochastic process called Irregularly spaced first-order Autore-

gressive Moving Average (IARMA) process. The definition is made from a constructionist

viewpoint. Later, we present process properties.

Definition 7 (IARMA–constructionist viewpoint). Let {εtn}n≥1 be independent random

variables each N(0,σ2cn(φ ,θ)) with σ2 > 0, 0≤ φ ,θ < 1, c1(φ ,θ) =
1+2θφ+θ 2

1−φ 2 and

cn(φ ,θ) = c1(φ ,θ)(1−φ
2∆n)−2φ

∆nθ
∆n− θ 2∆n

cn−1(φ ,θ)
for n≥ 2,

where ∆n = tn− tn−1. The process {Xtn, tn ∈ T′}, with T′ as was defined in Chapter 2,

Definition 5, is said to be an IARMA process if Xt1 = εt1 and, for n≥ 2,

Xtn = φ
∆nXtn−1 + εtn +

θ ∆n

cn−1(φ ,θ)
εtn−1. (3.4)



CHAPTER 3. IARMA PROCESS 30

We say that {Xtn, tn ∈ T′} is an IARMA process with mean µ if {Xtn − µ, tn ∈ T′} is an

IARMA process.

Note that, when φ = 0, we obtain an IMA process while when θ = 0, we get an IAR

process. Next, we present some properties of this process.

3.2.1 Process properties

If Xn = [Xt1, . . . ,Xtn ]
′ is a random vector from an IARMA process, then Xn is a Gaussian

random vector with mean mn = 0 and covariance matrix

Γn =



γ0

γ1,∆2 γ0

φ t3−t2γ1,∆2 γ1,∆3

. . .
...

... γ0

φ tn−1−t2γ1,∆2 φ tn−1−t3γ1,∆3 · · · γ1,∆n−1 γ0

φ tn−t2γ1,∆2 φ tn−t3γ1,∆3 · · · φ tn−tn−1γ1,∆n−1 γ1,∆n γ0


,

where γ0 = σ2(1+2φθ+θ 2)/(1−φ 2) and γ1,∆n = φ ∆nγ0 +σ2θ ∆n , for n ≥ 2. Thus, the IARMA

process is a weakly stationary Gaussian process and therefore strictly stationary. Fur-

ther, note that when ∆n = 1, for n ≥ 2, we get the conventional ARMA process. On the

other hand, since we can express (3.4) as a function of {εt j}n
j=1, for each n, then Xtn is

mixing and therefore ergodic (see Chapter 1, Theorem 4). Also, from (3.4), consider

Ytn = εtn + θ ∆n/cn−1(φ ,θ)εtn−1 , for n ≥ 2, with Var(Ytn) = σ2(c1(φ ,θ)(1−φ 2∆n)−2φ ∆nθ ∆n).

Hence, we have Xt1 = εt1 and, for n≥ 2,

Xtn = φ
∆nXtn−1 +Ytn,

with Cov(Xtn−1,Ytn) = φ ∆nσ2. By successive substitutions, we obtain
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Xtn = φ
tn−t1εt1 +

n

∑
j=2

φ
tn−t jYt j , for n≥ 2.

Consequently, the larger n, the initial condition effect vanishes. Then, the process “forget”

its initial starting value.

3.3 State-space representation

Now, using the same notation given in Chapter 2, Definition 7, we provide a state-space

representation of the model (3.4). This representation has the lowest dimension of the state

vector and is given by

αtn+1 = φ
∆n+1αtn +

(
φ

∆n+1 +
θ ∆n+1

cn(φ ,θ)

)
εtn,

Xtn = αtn + εtn ,

for n ≥ 1, with αt1 = 0. Note that, in this representation, the transition and measurement

equation disturbances are correlated. As is suggested by Harvey (1989), to get a new

system on which these disturbances are uncorrelated, we use

αtn+1 =

(
φ

∆n+1 +
θ ∆n+1

cn(φ ,θ)

)
Xtn−

θ ∆n+1

cn(φ ,θ)
αtn (3.5)

as the transition equation. The inclusion of Xtn in (3.5) does not afect Kalman filter, as Xtn

is known at time tn.
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3.4 Prediction

In this Section, we provide the one-step linear predictors to the IARMA model. Using the

innovations algorithm (see Appendix A.3), the one-step linear predictors are X̂t1(φ ,θ) = 0,

with mean squared error υ1 = σ2c1(φ ,θ), and

X̂tn+1(φ ,θ) = φ
∆n+1Xtn +

θ ∆n+1

cn(φ ,θ)
(Xtn− X̂tn(φ ,θ)), n≥ 1,

with mean squared errors υn+1 = σ2cn+1(φ ,θ).

3.5 Maximum likelihood estimation

Let Xt be observed at points t1, . . . , tN. The criterion function is

CN(φ ,θ ,σ
2) = logσ

2 +
1
N

N

∑
n=1

logcn(φ ,θ)+
1
N

N

∑
n=1

(Xtn− X̂tn(φ ,θ))
2

σ2cn(φ ,θ)
.

Holding fixed φ and θ , we can optimize CN(φ ,θ ,σ
2) with respect to σ2. The correspond-

ing conditional estimate of σ2 is

σ
2
N(φ ,θ) =

1
N

N

∑
n=1

(Xtn− X̂tn(φ ,θ))
2

cn (φ ,θ)
.

The concentrated criterion function is

qN(φ ,θ) =CN(φ ,θ ,σ
2
N(φ ,θ)) = logσ

2
N(φ ,θ)+

1
N

N

∑
n=1

logcn(φ ,θ).

Let φ0, θ0 and σ2
0 be any admissible parameter values. The maximum likelihood estimates

of φ0 and θ0, denoted φ̂N and θ̂N, respectively, are the values minimizing qN(φ ,θ) and the

estimate of σ2
0 is σ̂2

N = σ2
N(φ̂N, θ̂N). Henceforth, we could omit N in the estimates when

the notation is overload.
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3.6 Bootstrap estimation

In this section, we apply the bootstrap method to estimate φ0 and θ0 in the IARMA process

with σ2
0 = 1. Let Xt be observed at points t1, . . . , tN and consider φ̂N and θ̂N as the respective

MLE estimations. The standardized estimated innovations are

es
tn =

Xtn− X̂tn(φ̂N, θ̂N)√
cn(φ̂N, θ̂N)

,

for n = 2, . . . ,N. The so-called model-based resampling might proceed by equi-

probable sampling with replacement from centered residuals es
t2 − ē, . . . ,es

tN − ē, where

ē = ∑
N
n=2 es

tn/N−1, to obtain simulated innovations ζ ∗t1, . . . ,ζ
∗
tN , and then setting

X∗t1 =
√

c1(φ̂N, θ̂N)ζ
∗
t1,

X∗tn = φ̂
∆n
N X∗tn−1

+

√
cn(φ̂N, θ̂N)ζ

∗
tn +

θ̂
∆n
N

cn−1(φ̂N, θ̂N)

√
cn−1(φ̂N, θ̂N)ζ

∗
tn−1

,

for n = 2, . . . ,N. Next, we estimate the parameters through ML, assuming the data are X∗tn .

Thus, we can repeat this process a large number, B, of times generating a collection of

bootstrapped parameter estimates. Then, we can approximate the finite sample distribution

of the estimators, φ̂N and θ̂N, from the bootstrapped parameters values.

3.7 Monte Carlo study

This Section provides a Monte Carlo study. Our goal is to study the properties for

Maximum Likelihood (ML) and bootstrap estimators. We consider σ2
0 = 1, φ0 ∈ {0.5},

θ0 ∈ {0.1,0.5,0.9} and N ∈ {100,500,1500} where N represent the length of the se-

rie. We simulated M = 1000 trajectories, and estimated φ0 and θ0. For each set up, we

regard regular (see Appendix B.1) as well as irregular spaced times, t1, . . . , tN, where

tn− tn−1
ind∼ exp(λ = 1), for n = 2, . . . ,N. In Figure 3.1, we present an IARMA trajectory
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ϕ0 = 0.5, θ0 = 0.5, σ2
0 = 1, N = 100

Figure 3.1: IARMA trajectory example with φ0 = 0.5, θ0 = 0.5, σ2
0 = 1 and N = 100. On

the bottom, we found the tick marks of irregularly spaced times.

example with the tick marks of irregularly spaced times.

The workflow of the simulation study is the same used in the IMA model (see Figure

2.2). Next, we present the results for the irregularly spaced time case (see Appendix B.1

for the regularly spaced case). First, we show the simulated finite sample distributions for

maximum likelihood and bootstrap estimators. Second, for both estimators, we present

the measures of performance. Separately, we estimate the Monte Carlo Error (MCE) by
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asymptotic theory every simulation (see, Koehler et al., 2009), then we present the maxi-

mum value.

3.7.1 Finite sample distributions for ML and bootstrap estimators

In Figures 3.2 and 3.3, we provide the simulated finite sample distribution for ML and

bootstrap estimators. As we can see, both estimators have well behavior. They seem un-

biased and consistent. However, the smaller θ0, the more variables are the estimates. The

autoregressive estimator seems to have the same pattern.

3.7.2 Measures of performance-irregularly spaced case

As we can see in Table 3.1, for either maximum likelihood and bootstrap methods, the es-

timates have well behaviors. However, the smaller θ0, the more variables are the estimates.

Further, bias and uncertain are reduced when N increases. The standard error is suitably

estimated by either ML and bootstrap methods. Also, the irregularly spaced times seem

to increase the estimation uncertainty (see Appendix B.1). The autoregressive parameter

shows similar results as moving average cases, at least for values considered.

3.8 Application: relative abundance of an oxygen isotope

in an ocean core

Belcher et al. (1994) analyzed 164 measurements of relative abundance of an oxygen

isotope (δ 18O) in an ocean core. The data correspond to unequally spaced time points in

the past, with an average separation of 2000 years. Unevenly spaced tick marks indicate

the corresponding irregularly spaced sampled times in Figure 3.4. Below, we present the

ML and bootstrap estimates with their respective estimated standard errors.

φ̂
MLE = 0.954 ŝe(φ̂ MLE) = 0.010 σ̂

2
MLE = 0.014 ŝe(σ̂2

MLE) = 0.002
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Figure 3.2: Simulated finite sample distributions. On the left, the MLE case. On the right,
the bootstrap case.
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Figure 3.3: Simulated finite sample distributions. On the left, the MLE case. On the right,
the bootstrap case. When φ0 = 0.5, we use θ0 = 0.5.
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N θ0 θ̂ MLE ŝe(θ̂ MLE) s̃e(θ̂ MLE) b̂ias
θ̂ MLE R̂MSE

θ̂ MLE ĈV
θ̂ MLE

100
0.1 0.294 0.245 0.245 0.194 0.312 0.835
0.5 0.500 0.252 0.263 0.000 0.252 0.505
0.9 0.796 0.232 0.228 −0.104 0.255 0.292

500
0.1 0.192 0.158 0.179 0.092 0.183 0.827
0.5 0.501 0.149 0.160 0.001 0.149 0.298
0.9 0.885 0.090 0.094 −0.015 0.091 0.102

1500
0.1 0.131 0.102 0.116 0.031 0.106 0.780
0.5 0.499 0.094 0.098 −0.001 0.094 0.188
0.9 0.895 0.050 0.049 −0.005 0.050 0.056

N φ0 φ̂ MLE ŝe(φ̂ MLE) s̃e(φ̂ MLE) b̂ias
φ̂ MLE R̂MSE

φ̂ MLE ĈV
φ̂ MLE

100
0.5

0.448 0.155 0.167 −0.052 0.163 0.346
500 0.488 0.076 0.079 −0.012 0.077 0.156

1500 0.497 0.046 0.048 −0.003 0.046 0.092
N θ0 θ̂ b ŝe(θ̂ b) s̃e(θ̂ b) b̂ias

θ̂ b R̂MSE
θ̂ b ĈV

θ̂ b

100
0.1 0.365 0.235 0.129 0.265 0.354 0.643
0.5 0.520 0.252 0.169 0.020 0.253 0.485
0.9 0.739 0.228 0.165 −0.161 0.280 0.309

500
0.1 0.253 0.169 0.129 0.153 0.227 0.667
0.5 0.501 0.151 0.143 0.001 0.151 0.301
0.9 0.867 0.090 0.089 −0.033 0.096 0.104

1500
0.1 0.162 0.112 0.103 0.062 0.128 0.689
0.5 0.498 0.095 0.092 −0.002 0.095 0.190
0.9 0.889 0.049 0.047 −0.011 0.051 0.056

N φ0 φ̂ b ŝe(φ̂ b) s̃e(φ̂ b) b̂ias
φ̂ b R̂MSE

φ̂ b ĈV
φ̂ b

100
0.5

0.409 0.172 0.126 −0.091 0.194 0.420
500 0.478 0.081 0.073 −0.022 0.084 0.169

1500 0.493 0.047 0.047 −0.007 0.047 0.094

Table 3.1: Monte Carlo results for the irregularly spaced time case. The MCE estimated is
0.008. When φ0 = 0.5, we use θ0 = 0.5.
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φ̂
b = 0.950 ŝe(φ̂ b) = 0.011 σ̂

2
b = 0.014 ŝe(σ̂2

b ) = 0.002

As we can see in Figure 3.4, the fit looks adequate. Also, the standardized residuals

seem to follow a standard normal distribution. Here, we use a nonparametric density es-

timation of the standardized residuals with normality reference bands (see Bowman and

Azzalini, 1997). Further, Figure 3.4 exhibits the ACF estimated and the results from a

Ljung-Box test. As we expected, the series complies with the test at the 5% significance

level. On the other hand, Belcher et al. (1994) and Wang (2013) analyzed the same data set

through continuous-time autoregressive models via the Kalman filter. They fitted a model

of order 7 to the data. However, their estimates have considerable variation. When we

compare their fit with ours, we observed similar results (the relative Mean Absolute Error

(rMAE) is 1.143, see Davydenko and Fildes, 2013). Nevertheless, our model is more par-

simonious. The results were obtained through our R package called istsa (see Appendix

B.2).
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Figure 3.4: On the left-top, the relative abundance of an oxygen isotope (δ 18O) in an ocean
core with the predicted values and their respective variability bands. On the right-top, non-
parametric density estimation of the standardized residuals with normality reference bands.
In this case, we use φ̂ MLE. On the bottom-left, the autocorrelation function estimated. On
the bottom-right, the Ljung-Box test for randomness.



Chapter 4

Concluding remarks and future
directions

In this thesis, we have presented two novel models to analyze irregularly spaced time series

with either moving averages and autoregressive moving averages structures.

In Chapter 2, we proposed an irregularly spaced first-order moving average model that

allows us to treat moving averages structures with irregularly spaced times. Its formal

definition and properties were established. Also, we showed the state space representation

along with one-step linear predictors. Further, we studied the estimation procedures for

either maximum likelihood and bootstrap methods through Monte Carlo. For both methods,

the estimates had well behaviors, and the standard error was suitably estimated. Also, bias

and uncertain were reduced when N increased. The medical illustration showed a good fit.

In Chapter 3, we proposed an irregularly spaced first-order autoregressive moving aver-

age model that allows us to treat first-order autoregressive moving averages structures with

irregularly spaced times. We have presented the definition and properties. The state-space

representation, along with one-step linear predictors, was given. We studied the estimation

procedures for either maximum likelihood and bootstrap methods through Monte Carlo.

For both methods, the estimates (either autoregressive and moving average) had well be-

haviors, and the standard error was suitably estimated. The geophysical application gave

well behavior. In spite of other authors have already analyzed the same data through a

41
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continuous-time autoregressive model, their estimates have considerable variation, and the

model obtained was less parsimonious that our estimated model.

In future directions, it would be desirably generalized the first-order IARMA process

to higher orders to consider more complex structures. Also, it would be interesting to find

stochastic times that allow us to improve the phenomena modeling process. Furthermore,

since we have established our models with positive covariance structures, it would be at-

tractive to generalize such structures in order to consider negative covariances. Finally, the

IMA and IARMA models can be used in longitudinal data problems since there we usually

have irregularly spaced times for each observation (see, e.g., Jones and Boadi-Boateng,

1991; Muñoz et al., 1992).



Appendix A

Appendix Chapter 2

A.1 Constructionist viewpoint

Next, we give some details about how we built the IMA model from the constructionist

viewpoint. The main idea is to specify the IMA process as a function of other (often

simpler) stochastic processes.

Let {ζtn}n≥1 be iid random variables each N(0,1) and consider,

Xt1 = ν
1/2
1 ζt1,

Xtn+1 = ν
1/2
n+1ζtn+1 +ωnν

1/2
n ζtn , for n≥ 1,

where {νn}n≥1 and {ωn}n≥1 are time-varying sequences that characterize the moments of

the process. Thus, for n≥ 1, we have E(Xtn) = 0,

Var(Xt1) = ν1, Var(Xtn+1) = νn+1 +ω
2
n νn, and

Cov(Xtn,Xtn+k) =

ωnνn, k = 1,

0, k ≥ 2.

43



APPENDIX A. APPENDIX CHAPTER 2 44

Our main is to find {νn}n≥1 and {ωn}n≥1 so that {Xtn}n≥1 be a stationary process. For

this, we need that, for n≥ 1, Var(Xtn+1) = Var(Xt1) = γ0 and Cov(Xtn,Xtn+1) = γ1,∆n+1 with

γ1,∆n+1 a function of ∆n+1 = tn+1− tn. Thus,

νn+1 +ω
2
n νn = ν1 = γ0 and

ωnνn = γ1,∆n+1 for n≥ 1.

From these equations, we obtain

ωn =
γ1,∆n+1

νn
and νn+1 = γ0−

γ2
1,∆n+1

νn
, with ν1 = γ0.

Therefore, we can set a real-valued stationary process defining γ0 and {γ1,∆n+1}n≥1 suitably,

that is, in such a way that νn > 0, for all n.

According to Kiliç (2008), the sequence {νn}n≥1 is known as a general backward

continued fraction and if γ0 > 0 and, for n ≥ 1,
(

γ1,∆n+1
γ0

)2
≤ 1/4 with γ1,∆n+1 6= 0, then

{νn}n≥1 is a strictly positive sequence. Hence, under these conditions, {Xtn}n≥1 is a well

defined real-valued stationary stochastic process. Specifically, in the IMA process, the

variance and the first-order covariance functions were defined as

γ0 = σ
2(1+θ

2) and γ1,∆n+1 = σ
2
θ

∆n+1 for n≥ 1.

In this specification, we achieve the conventional MA process when ∆n+1 = 1 for n≥ 1.

Next, we present several results that allow us to obtain the conditions under which a

general backward continued fraction is a strictly positive sequence. The sequence {νn}n≥1

is known as a general backward continued fraction and its n+1-th convergent is
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νn+1 =

[
γ0 +
−γ2

1,∆2

γ0+

−γ2
1,∆3

γ0+
· · ·
−γ2

1,∆n+1

γ0

]
b

= γ0 +
− γ2

1,∆n+1

γ0 +
− γ2

1,∆n

γ0 +

. . .

γ0 +
− γ2

1,∆2

γ0

.

Thus, few convergent are

ν2 =

[
γ0 +
−γ2

1,∆2

γ0+

]
b

=
γ2

0 − γ2
1,∆2

γ0
,

ν3 =

[
γ0 +
−γ2

1,∆2

γ0+

−γ2
1,∆3

γ0+

]
b

=
γ3

0 − γ0γ2
1,∆2
− γ0γ2

1,∆3

γ2
0 − γ2

1,∆2

,

ν4 =

[
γ0 +
−γ2

1,∆2

γ0+

−γ2
1,∆3

γ0+

−γ2
1,∆4

γ0+

]
b

=
γ4

0 − γ2
0 γ2

1,∆2
− γ2

0 γ2
1,∆3
− γ2

0 γ2
1,∆4

+ γ2
1,∆2

γ2
1,∆4

γ3
0 − γ0γ2

1,∆2
− γ0γ2

1,∆3

.

The ratio for this general backward continued fraction is

ν1 =
P1

P0
and νn+1 =

Pn+1

Pn
,

for n≥ 1, where the sequence {Pn}n≥0 is

Pn+1 = γ0Pn− γ
2
1,∆n+1

Pn−1

with P1 = γ0 and P0 = 1. This sequence is obtained by what is known as the Wallis-Euler

recurrence relations (Loya, 2017). El-Mikkawy and Karawia (2006) proves that Pk > 0, for

k = 1, . . . ,n+1, if and only if the matrix
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Γn+1 =



γ0 γ1,∆2 · · · 0 0

γ1,∆2 γ0 · · · 0 0
...

... . . . ...
...

0 0 · · · γ0 γ1,∆n+1

0 0 · · · γ1,∆n+1 γ0


is positive definite with Γ1 = [γ0]. Further, they proved that detΓ1 =P1 and detΓn+1 =Pn+1.

Andelić and da Fonseca (Theorem 3.3, pp. 158, 2011) present the so-called Wall-Wetzel

Theorem (Wall and Wetzel, 1944), which relates positive definiteness of a tridiagonal ma-

trix (taking γ1,∆n+1 6= 0 for all n) with a certain related sequence. Indeed, the real tridiagonal

matrix Γn+1 is positive definite, for all n, if and only if γ0 > 0 and{(
γ1,∆k+1

γ0

)2
}n

k=1

is a chain sequence for all n (see, Theorem 3.2, pp. 70, Ismail and Muldoon, 1991).

Wall (1948) worked the theory of chain sequences studying orthogonal polynomials.

A finite or infinite sequence {αn}n≥1 is called a (positive) chain sequence if there is a

parameter sequence {gn}n≥0, where 0≤ g0 < 1 is called an initial parameter, such that

αn = gn (1−gn−1) ,n≥ 1, with 0 < gn < 1, for n≥ 1.

It is important to consider the following result due to Wall (Theorem 20.1, pp. 86,

1948). This result was called by Chihara (Theorem 5.7, pp. 97, 1978) the comparison test

because this says that any positive sequence bounded by a chain sequence is also a chain

sequence. Thus, if {αn}n≥1 is a chain sequence and

0 < βn ≤ αn, for all n≥ 1,

then {βn}n≥1 is also a chain sequence. Further, Wall (Theorem 19.1, pp. 79, 1948) char-

acterize all constant term chain sequences. A constant term sequence {α}n≥1 is a chain
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sequence if and only if 0 < α ≤ 1/4. Thus, {βn}n≥1 is a chain sequence if

0 < βn ≤ 1/4, for all k ≥ 1.

Thus, if γ0 > 0 and, for n≥ 1,
(

γ1,∆n+1
γ0

)2
≤ 1/4 with γ1,∆n+1 6= 0, then {νn}n≥1 is a strictly

positive sequence.

A.2 On the general backward continued fraction in the

IMA process

Given 0 < θ < 1, cn(θ)> 0 and ∆n+1 ≥ 1, for all n≥ 1, we have

cn+1(θ) = 1+θ
2− θ 2∆n+1

cn(θ)
< 1+θ

2 < 2 for n≥ 1.

Now, we know that c1(θ) = 1+θ 2 > 1. Hence,

c2(θ) = 1+θ
2− θ 2∆2

c1(θ)
> 1+θ

2−θ
2∆2 > 1+θ

2−θ
2 = 1.

Hence,

c2(θ) = 1+θ
2− θ 2∆2

c1(θ)
> 1+θ

2−θ
2∆2 > 1+θ

2−θ
2 = 1.

In general, suppose that cn(θ)> 1. Then,

cn+1(θ) = 1+θ
2− θ 2∆n+1

cn(θ)
> 1+θ

2−θ
2∆n+1 > 1.

Thus,

1 < cn(θ)< 2 for all n.
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A.3 Innovations algorithm

Following to Brockwell and Davis (1991, Proposition 5.2.2, pp.172), we obtain the coeffi-

cients of X̂tn+1 = ∑
n
j=1 θn j(Xtn+1− j − X̂tn+1− j) through the next proposition.

Proposition 8. If {Xtn}n≥1 has zero mean and E(XtiXt j) = γ(ti, t j), where the matrix[
γ(ti, t j)

]n
i, j=1 is non-singular for each n = 1,2, . . ., then the one-step predictors X̂tn+1 ,

n≥ 0, and their mean squared errors υn, n≥ 1, are given by

X̂tn+1 =

0 if n = 0,

∑
n
j=1 θn j

(
Xtn+1− j − X̂tn+1− j

)
if n≥ 1,

and 
υ1 = γ(t1, t1),

θn,n−k = υ
−1
k+1

(
γ(tn+1, tk+1)−∑

k−1
j=0 θk,k− jθn,n− jυ j+1

)
, k = 0,1, . . . ,n−1,

υn+1 = γ(tn+1, tn+1)−∑
n−1
j=0 θ 2

n,n− jυ j+1.

For the irregularly spaced first-order moving average process of general form we have,

θn, j = 0, 2≤ j ≤ n,

θn,1 = υ
−1
n γ1,∆n+1,

υn+1 = γ0−θ
2
n,1υn = γ0−

γ2
1,∆n+1

υn
, and υ1 = γ0.

A.4 Measures of performance-regularly spaced case

In Table A.1, we present the Monte Carlo results when we consider regularly spaced times

to compare with the irregularly spaced case. As we can see, the Monte Carlo results for

the regularly spaced time case has the same behavior that the irregularly spaced time case.

Nevertheless, the regularly spaced time case has less uncertain.
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N θ0 θ̂ MLE ŝe(θ̂ MLE) s̃e(θ̂ MLE) b̂ias
θ̂ MLE R̂MSE

θ̂ MLE ĈV
θ̂ MLE

100
0.1 0.108 0.103 0.087 0.008 0.103 0.952
0.5 0.502 0.089 0.096 0.002 0.089 0.178
0.9 0.910 0.051 0.055 0.010 0.052 0.056

500
0.1 0.097 0.045 0.044 −0.003 0.045 0.461
0.5 0.499 0.039 0.039 −0.001 0.039 0.078
0.9 0.901 0.020 0.021 0.001 0.020 0.022

1500
0.1 0.099 0.026 0.026 −0.001 0.026 0.261
0.5 0.500 0.022 0.022 0.000 0.022 0.045
0.9 0.901 0.011 0.011 0.001 0.011 0.013

N θ0 θ̂ b ŝe(θ̂ b) s̃e(θ̂ b) b̂ias
θ̂ b R̂MSE

θ̂ b ĈV
θ̂ b

100
0.1 0.120 0.082 0.073 0.020 0.084 0.685
0.5 0.502 0.093 0.099 0.002 0.093 0.186
0.9 0.915 0.049 0.050 0.015 0.051 0.054

500
0.1 0.098 0.041 0.042 −0.002 0.042 0.422
0.5 0.499 0.039 0.041 −0.001 0.039 0.079
0.9 0.902 0.020 0.021 0.002 0.021 0.023

1500
0.1 0.098 0.026 0.026 −0.002 0.026 0.260
0.5 0.500 0.022 0.023 0.000 0.022 0.045
0.9 0.902 0.011 0.012 0.002 0.011 0.013

Table A.1: Monte Carlo results for the regularly spaced time case. The MCE estimated is
0.003.
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A.5 R package: istsa

We present our package called istsa, which means irregularly spaced time series analysis.

The functions to simulate irregularly spaced times are:

timeSimExp Exponential increments. This function simulate irregularly spaced times

t1, t2, . . . , tN with independent exponential increments. Let ∆1, . . . ,∆N be time incre-

ments with ∆1 = t1. The function define ∆n = rexp(rate= rate1)+1 with prob-

ability w, or ∆n = rexp(rate= rate2)+1 with probability 1−w for n = 1, . . . ,N.

The assignation is made randomly. We sum one to ensure ∆n ≥ 1 for all n.

time <- timeSimExp(N = 100, rate1 = 1, rate2 = 1, w = 0.50)

Delta <- diff(time)

summary(Delta)

timeSimPois Poisson increments. This function simulate irregularly spaced times

t1, t2, . . . , tN with independent Poisson increments. Let ∆1, . . . ,∆N be time incre-

ments with ∆1 = t1. The function define ∆n = rpois(lambda= lambda1)+1 with

probability w, or ∆n = rpois(lambda= lambda2)+1 with probability 1− w for

n = 1, . . . ,N. The assignation is made randomly. We sum one to ensure ∆n ≥ 1

for all n.

time <- timeSimPois(N = 100, lambda1 = 1, lambda2 = 1, w = 0.50)

Delta <- diff(time)

table(Delta)

perSamp Periodic sampling, see Robinson (1977). Let τ1, . . . ,τM be a set of times such

that τn−τn−1 ≥ 1 for n = 2, . . . ,M. This function create a periodic pattern as follow:

τ1, . . . ,τM,τ1 +π, . . . ,τM +π, . . . ,τ1 +(k−1)π, . . . ,τM +(k−1)π.



APPENDIX A. APPENDIX CHAPTER 2 51

time <- perSamp(tau = 1:5, k = 3, pi = 24)

Delta <- diff(time)

table(Delta)

The functions of the IMA model are:

imaSim Simulation. Given parameters and a time vector of length N, this function simu-

lates M trajectories from an IMA process. Trajectories are simulated as random sam-

ples from a multivariate Gaussian distribution with mean 0 and covariance matrix Γ

(the IMA covariance matrix). Times vector can be simulated by timeSimExp(N).

set.seed(1234)

imaSeries <- imaSim(theta = 0.4, var = 1,

time = timeSimExp(N = 250, rate1 = 0.1),

M = 4)

plot(imaSeries, nc = 2, panel = function(...){

lines(...)

rug(x = zoo::index(imaSeries), col = 2)})

imaMinusLogLik Minus log-likelihood. This function finds minus log-likelihood of IMA

process with likelihood = MN(0,Γ), where Γ is the IMA covariance matrix.

set.seed(1234)

imaSeries <- imaSim(theta = 0.4,

time = timeSimExp(N = 250, rate1 = 0.1))
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imaMinusLogLik(par = c(theta = 0.2, var = 2),

serie = zoo::coredata(imaSeries),

time = zoo::index(imaSeries))

imaGbcf General backward continued fraction. This function calculates the general back-

ward continued fraction c1(θ), . . . ,cN(θ) for the IMA process.

imaGbcf(theta = 0.8,

time = timeSimExp(N = 250, rate1 = 0.1))

imaPredictOneStep Finite one-step linear prediction and mean squared prediction er-

rors. This function calculates the finite one-step linear prediction and the mean

squared prediction errors for the IMA process.

data(asth, package = 'cts')

mleEst <- imaMLE(serie = asth[1:100, 2], time = asth[1:100, 1])

predV <- imaPredictOneStep(theta = unname(mleEst$par['theta']),

var = unname(mleEst$par['var']),

serie = asth[1:100, 2], time = asth[1:100, 1])

plot(predV$serie, xlab = "Time in hours", ylab = "",

lwd = 1.5, col = "gray40")

rug(asth[, 1], col = "red")

lines(predV$PredictOneStep, col = 4, lty = 2, lwd = 2)

lines(predV$PredictOneStep - (1.96*sqrt(predV$mspeOneStep)),

col = 4, lty = 3)
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lines(predV$PredictOneStep + (1.96*sqrt(predV$mspeOneStep)),

col = 4, lty = 3)

imaMLE Maximum likelihood estimation. This function estimates the parameters of IMA

process by maximum likelihood. It uses the L-BFGS-B method with bounds lower

= c(l.theta = 0.01, l.var = 0.01) and upper = c(u.theta = 0.99,

u.var = Inf). We can to pass arguments to optim. For instance, hessian, a

logical: should a numerically differentiated Hessian matrix be returned?

set.seed(1234)

imaSeries <- imaSim(theta = 0.4,

time = timeSimExp(N = 250, rate1 = 0.1))

mleEst <- imaMLE(iPar = c(theta = 0.5, var = 1),

serie = zoo::coredata(imaSeries),

time = zoo::index(imaSeries),

hessian = TRUE)

# ml estimation

mleEst$par

# estimated standard errors

sqrt(diag(solve(mleEst$hessian)))

imaBootSamples Bootstrap sample generation. This function generates bootstrap sam-

ples from a trajectory of the IMA process.
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data(asth, package = 'cts')

mleEst <- imaMLE(serie = asth[1:100, 2], time = asth[1:100, 1])

bootSam <- imaBootSamples(theta=unname(mleEst$par['theta']),

var = unname(mleEst$par['var']),

serie = asth[1:100, 2], time = asth[1:100, 1], B = 6)

plot(bootSam)

bootEst <- apply(X = zoo::coredata(bootSam), MARGIN = 2,

FUN = function(s){imaMLE(serie = s,

time = asth[1:100, 1])$par})

# bootstrap estimation

rowMeans(bootEst)

# estimated standard errors

apply(X = bootEst, MARGIN = 1, FUN = sd))
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Appendix Chapter 3

B.1 Measures of performance-regularly spaced case

In Table B.1, we present the Monte Carlo results when we consider regularly spaced times

to compare with the irregularly spaced case. As we can see, the Monte Carlo results for

the regularly spaced time case has the same behavior that the irregularly spaced time case.

Nevertheless, the regularly spaced time case has less uncertain. The autoregressive param-

eter shows similar results as moving average cases, at least for values considered.

B.2 R package: istsa

Below, we present additional functions of the istsa package. The following functions are

related to the IARMA model:

iarmaSim Simulation. Given parameters and a time vector of length N, this function simu-

lates M trajectories from an IARMA process. Trajectories are simulated through the

transition equation from the state-space representation of the model. Times vector

can be simulated by timeSimExp(N).

55
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N θ0 θ̂ MLE ŝe(θ̂ MLE) s̃e(θ̂ MLE) b̂ias
θ̂ MLE R̂MSE

θ̂ MLE ĈV
θ̂ MLE

100
0.1 0.165 0.183 0.146 0.065 0.195 1.111
0.5 0.521 0.110 0.117 0.021 0.112 0.211
0.9 0.914 0.052 0.056 0.014 0.054 0.057

500
0.1 0.109 0.079 0.071 0.009 0.079 0.724
0.5 0.503 0.049 0.049 0.003 0.049 0.097
0.9 0.901 0.021 0.021 0.001 0.021 0.023

1500
0.1 0.103 0.045 0.044 0.003 0.045 0.438
0.5 0.502 0.028 0.028 0.002 0.028 0.056
0.9 0.901 0.012 0.012 0.001 0.012 0.013

N φ0 φ̂ MLE ŝe(φ̂ MLE) s̃e(φ̂ MLE) b̂ias
φ̂ MLE R̂MSE

φ̂ MLE ĈV
φ̂ MLE

100
0.5

0.466 0.112 0.114 −0.034 0.117 0.240
500 0.493 0.049 0.049 −0.007 0.049 0.099

1500 0.497 0.028 0.028 −0.003 0.028 0.057
N θ0 θ̂ b ŝe(θ̂ b) s̃e(θ̂ b) b̂ias

θ̂ b R̂MSE
θ̂ b ĈV

θ̂ b

100
0.1 0.218 0.144 0.112 0.118 0.186 0.658
0.5 0.538 0.114 0.111 0.038 0.120 0.212
0.9 0.921 0.049 0.048 0.021 0.053 0.053

500
0.1 0.124 0.068 0.064 0.024 0.072 0.550
0.5 0.506 0.049 0.049 0.006 0.049 0.097
0.9 0.904 0.021 0.022 0.004 0.021 0.023

1500
0.1 0.107 0.043 0.042 0.007 0.043 0.397
0.5 0.503 0.028 0.029 0.003 0.028 0.056
0.9 0.902 0.012 0.012 0.002 0.012 0.013

N φ0 φ̂ b ŝe(φ̂ b) s̃e(φ̂ b) b̂ias
φ̂ b R̂MSE

φ̂ b ĈV
φ̂ b

100
0.5

0.435 0.115 0.108 −0.065 0.132 0.263
500 0.486 0.049 0.049 −0.014 0.051 0.101

1500 0.495 0.028 0.028 −0.005 0.029 0.057

Table B.1: Monte Carlo results for the regularly spaced time case. The MCE estimated is
0.005. When φ0 = 0.5, we use θ0 = 0.5.
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set.seed(1234)

iarmaSeries <- iarmaSim(phi = 0.8, theta = 0.3, var = 15,

time = timeSimExp(N = 250), M = 4)

plot(iarmaSeries, nc = 2, panel = function(...){

lines(...)

rug(x = zoo::index(iarmaSeries), col = 2)})

iarmaSS Space-state representation. This function create a state-space representation out

of the IARMA model (see Luethi et al. (2018)).

sim <- iarmaSim(phi = 0.8, theta = 0.3, var = 15,

time = timeSimExp(N = 250), M = 4)

serie <- zoo::coredata(sim[,1])

time <- zoo::index(sim)

par <- c(0.2, 0.6, 30)

iarmaSS(phi = par[1], theta = par[2], var = par[3],

serie, time)

iarmaMinusLogLik Minus log-likelihood. This function finds minus log-likelihood of

IARMA process through the space-state representation of the model.

sim <- iarmaSim(phi = 0.8, theta = 0.3,

var = 15, time = timeSimExp(N = 100),

M = 4)

iarmaMinusLogLik(par = c(0.8, 0.3, 15),
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serie = zoo::coredata(sim[,1]),

time = zoo::index(sim))

iarmaGbcf General backward continued fraction. This function calculates the general

backward continued fraction c1(φ ,θ), . . . ,cN(φ ,θ) for the IARMA process.

iarmaGbcf(phi = 0.2, theta = 0.6,

time = timeSimExp(N = 100))

iarmaPredictOneStep Finite one-step linear prediction and mean squared prediction er-

rors. This function calculates the finite one-step linear prediction and the mean

squared prediction errors for the IARMA process.

sim <- iarmaSim(phi = 0.8, theta = 0.3, var = 15,

time = timeSimExp(N = 1000), M = 4)

fit <- iarmaMLE(serie = zoo::coredata(sim[,1]),

time = zoo::index(sim), hessian = TRUE)

predV <- iarmaPredictOneStep(phi = fit$par["phi"],

theta = fit$par["theta"], var = fit$par["var"],

serie = zoo::coredata(sim[,1]),

time = zoo::index(sim))

plot(predV$serie, xlab = "Time in hours", ylab = "",

lwd = 1.5, col = "gray40")

rug(zoo::index(predV), col = "red")

lines(predV$PredictOneStep, col = 4, lty = 2, lwd = 2)
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lines(predV$PredictOneStep - (1.96*sqrt(predV$mspeOneStep)),

col = 4, lty = 3)

lines(predV$PredictOneStep + (1.96*sqrt(predV$mspeOneStep)),

col = 4, lty = 3)

iarmaMLE Maximum likelihood estimation. This function estimates the parameters of

IARMA process by maximum likelihood. It uses the L-BFGS-B method with

bounds lower = c(l.phi = 0.01, l.theta = 0.01, l.var = 0.01) and

upper = c(u.phi = 0.99, u.theta = 0.99, u.var = Inf). We can to pass arguments

to optim. For instance, hessian, a logical: should a numerically differentiated

Hessian matrix be returned?

sim <- iarmaSim(phi = 0.8, theta = 0.3, var = 15,

time = timeSimExp(N = 1000), M = 4)

fit <- iarmaMLE(iPar = c(phi = 0.5, theta = 0.5, var = 1),

serie = zoo::coredata(sim[,1]),

time = zoo::index(sim), hessian = TRUE)

# ml estimation

fit$par

# estimated standard errors

sqrt(diag(solve(fit$hessian)))

iarmaBootSamples Bootstrap sample generation. This function generates bootstrap sam-

ples from a trajectory of the IARMA process.
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sim <- iarmaSim(phi = 0.8, theta = 0.3, var = 15,

time = timeSimExp(N = 1000), M = 4)

fit <- iarmaMLE(serie = zoo::coredata(sim[,1]),

time = zoo::index(sim), hessian = TRUE)

bootSam <- iarmaBootSamples(phi = fit$par["phi"],

theta = fit$par["theta"],

var = fit$par["var"],

serie = zoo::coredata(sim[,1]),

time = zoo::index(sim), B = 5)

bootEst <- apply(X = zoo::coredata(bootSam),

MARGIN = 2, FUN = function(s){

iarmaMLE(serie = s,

time = zoo::index(sim))$par

})

# bootstrap estimation

rowMeans(bootEst)

# estimated standard errors

apply(X = bootEst, MARGIN = 1, FUN = sd))
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