3.10 Facultad de Física
Permanent URI for this community
Browse
Browsing 3.10 Facultad de Física by Subject "523.8875"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
- ItemThermodynamics of graviton condensate and the Kiselev black hole(2020) Mancilla Pérez, Robinson Humberto; Alfaro Solís, Jorge Luis; Pontificia Universidad Católica de Chile. Instituto de FísicaIn this thesis, we will present the thermodynamic study of a model that considers the black hole as a condensation of gravitons (55) (56). We will obtain a correction to the Hawking temperature and a negative pressure for a black hole of mass M. In this way, the graviton condensate, which is assumed to be at the critical point defined by the condition µch=0, will have well-defined thermodynamic quantities P, V , Th, S, and U as any other Bose-Einstein condensate. We will also discuss the Kiselev black hole, which has the capacity to parametrize the most well-known spherically symmetric black holes. We will show that this is true, even at the thermodynamic level. Finally, we will present a new metric, which we will call the BEC-Kiselev black hole, that will allow us to extend the graviton condensate to the case of solutions with different types of the energy-momentum tensor.In this thesis, we will present the thermodynamic study of a model that considers the black hole as a condensation of gravitons (55) (56). We will obtain a correction to the Hawking temperature and a negative pressure for a black hole of mass M. In this way, the graviton condensate, which is assumed to be at the critical point defined by the condition µch=0, will have well-defined thermodynamic quantities P, V , Th, S, and U as any other Bose-Einstein condensate. We will also discuss the Kiselev black hole, which has the capacity to parametrize the most well-known spherically symmetric black holes. We will show that this is true, even at the thermodynamic level. Finally, we will present a new metric, which we will call the BEC-Kiselev black hole, that will allow us to extend the graviton condensate to the case of solutions with different types of the energy-momentum tensor.In this thesis, we will present the thermodynamic study of a model that considers the black hole as a condensation of gravitons (55) (56). We will obtain a correction to the Hawking temperature and a negative pressure for a black hole of mass M. In this way, the graviton condensate, which is assumed to be at the critical point defined by the condition µch=0, will have well-defined thermodynamic quantities P, V , Th, S, and U as any other Bose-Einstein condensate. We will also discuss the Kiselev black hole, which has the capacity to parametrize the most well-known spherically symmetric black holes. We will show that this is true, even at the thermodynamic level. Finally, we will present a new metric, which we will call the BEC-Kiselev black hole, that will allow us to extend the graviton condensate to the case of solutions with different types of the energy-momentum tensor.In this thesis, we will present the thermodynamic study of a model that considers the black hole as a condensation of gravitons (55) (56). We will obtain a correction to the Hawking temperature and a negative pressure for a black hole of mass M. In this way, the graviton condensate, which is assumed to be at the critical point defined by the condition µch=0, will have well-defined thermodynamic quantities P, V , Th, S, and U as any other Bose-Einstein condensate. We will also discuss the Kiselev black hole, which has the capacity to parametrize the most well-known spherically symmetric black holes. We will show that this is true, even at the thermodynamic level. Finally, we will present a new metric, which we will call the BEC-Kiselev black hole, that will allow us to extend the graviton condensate to the case of solutions with different types of the energy-momentum tensor.In this thesis, we will present the thermodynamic study of a model that considers the black hole as a condensation of gravitons (55) (56). We will obtain a correction to the Hawking temperature and a negative pressure for a black hole of mass M. In this way, the graviton condensate, which is assumed to be at the critical point defined by the condition µch=0, will have well-defined thermodynamic quantities P, V , Th, S, and U as any other Bose-Einstein condensate. We will also discuss the Kiselev black hole, which has the capacity to parametrize the most well-known spherically symmetric black holes. We will show that this is true, even at the thermodynamic level. Finally, we will present a new metric, which we will call the BEC-Kiselev black hole, that will allow us to extend the graviton condensate to the case of solutions with different types of the energy-momentum tensor.In this thesis, we will present the thermodynamic study of a model that considers the black hole as a condensation of gravitons (55) (56). We will obtain a correction to the Hawking temperature and a negative pressure for a black hole of mass M. In this way, the graviton condensate, which is assumed to be at the critical point defined by the condition µch=0, will have well-defined thermodynamic quantities P, V , Th, S, and U as any other Bose-Einstein condensate. We will also discuss the Kiselev black hole, which has the capacity to parametrize the most well-known spherically symmetric black holes. We will show that this is true, even at the thermodynamic level. Finally, we will present a new metric, which we will call the BEC-Kiselev black hole, that will allow us to extend the graviton condensate to the case of solutions with different types of the energy-momentum tensor.In this thesis, we will present the thermodynamic study of a model that considers the black hole as a condensation of gravitons (55) (56). We will obtain a correction to the Hawking temperature and a negative pressure for a black hole of mass M. In this way, the graviton condensate, which is assumed to be at the critical point defined by the condition µch=0, will have well-defined thermodynamic quantities P, V , Th, S, and U as any other Bose-Einstein condensate. We will also discuss the Kiselev black hole, which has the capacity to parametrize the most well-known spherically symmetric black holes. We will show that this is true, even at the thermodynamic level. Finally, we will present a new metric, which we will call the BEC-Kiselev black hole, that will allow us to extend the graviton condensate to the case of solutions with different types of the energy-momentum tensor.In this thesis, we will present the thermodynamic study of a model that considers the black hole as a condensation of gravitons (55) (56). We will obtain a correction to the Hawking temperature and a negative pressure for a black hole of mass M. In this way, the graviton condensate, which is assumed to be at the critical point defined by the condition µch=0, will have well-defined thermodynamic quantities P, V , Th, S, and U as any other Bose-Einstein condensate. We will also discuss the Kiselev black hole, which has the capacity to parametrize the most well-known spherically symmetric black holes. We will show that this is true, even at the thermodynamic level. Finally, we will present a new metric, which we will call the BEC-Kiselev black hole, that will allow us to extend the graviton condensate to the case of solutions with different types of the energy-momentum tensor.In this thesis, we will present the thermodynamic study of a model that considers the black hole as a condensation of gravitons (55) (56). We will obtain a correction to the Hawking temperature and a negative pressure for a black hole of mass M. In this way, the graviton condensate, which is assumed to be at the critical point defined by the condition µch=0, will have well-defined thermodynamic quantities P, V , Th, S, and U as any other Bose-Einstein condensate. We will also discuss the Kiselev black hole, which has the capacity to parametrize the most well-known spherically symmetric black holes. We will show that this is true, even at the thermodynamic level. Finally, we will present a new metric, which we will call the BEC-Kiselev black hole, that will allow us to extend the graviton condensate to the case of solutions with different types of the energy-momentum tensor.In this thesis, we will present the thermodynamic study of a model that considers the black hole as a condensation of gravitons (55) (56). We will obtain a correction to the Hawking temperature and a negative pressure for a black hole of mass M. In this way, the graviton condensate, which is assumed to be at the critical point defined by the condition µch=0, will have well-defined thermodynamic quantities P, V , Th, S, and U as any other Bose-Einstein condensate. We will also discuss the Kiselev black hole, which has the capacity to parametrize the most well-known spherically symmetric black holes. We will show that this is true, even at the thermodynamic level. Finally, we will present a new metric, which we will call the BEC-Kiselev black hole, that will allow us to extend the graviton condensate to the case of solutions with different types of the energy-momentum tensor.