Browsing by Author "Prieto Vásquez, Claudia"
Now showing 1 - 20 of 75
Results Per Page
Sort Options
- Item100% Efficient three-dimensional coronary MR angiography with two-dimensional beat-to-beat translational and bin-to-bin affine motion correction(2015) Aitken, A.; Henningsson, M.; Botnar, René Michael; Schaeffter, T.; Prieto Vásquez, Claudia
- Item3D Cartesian fast interrupted steady-state (FISS) imaging(2019) Küstner, Thomas; Bustin, Aurélien; Jaubert, Olivier; Neji, Radhouene; Prieto Vásquez, Claudia; Botnar, René Michael
- Item3D free-breathing cardiac magnetic resonance fingerprinting(2020) Cruz, G.; Jaubert, O.; Qi, H. K.; Bustin, A.; Milotta, G.; Schneider, T.; Koken, P.; Doneva, M.; Botnar, René Michael; Prieto Vásquez, Claudia
- Item3D SASHA myocardial T1 mapping with high accuracy and improved precision(2019) Nordio, Giovanna; Bustin, Aurélien; Henningsson, Markus; Rashid, Imran; Chiribiri, Amedeo; Ismail, Tevfik; Odille, Freddy; Prieto Vásquez, Claudia; Botnar, René Michael
- Item3D whole-heart free-breathing qBOOST-T2 mapping(2020) Milotta, G.; Ginami, G.; Bustin, A.; Neji, R.; Prieto Vásquez, Claudia; Botnar, René Michael
- Item3D whole-heart grey-blood late gadolinium enhancement cardiovascular magnetic resonance imaging(2021) Milotta, Giorgia; Munoz, Camila; Kunze, Karl P.; Neji, Radhouene; Figliozzi, Stefano; Chiribiri, Amedeo; Hajhosseiny, R.; Masci, Pier Giorgio; Prieto Vásquez, Claudia; Botnar, René MichaelAbstract Purpose To develop a free-breathing whole-heart isotropic-resolution 3D late gadolinium enhancement (LGE) sequence with Dixon-encoding, which provides co-registered 3D grey-blood phase-sensitive inversion-recovery (PSIR) and complementary 3D fat volumes in a single scan of < 7 min. Methods A free-breathing 3D PSIR LGE sequence with dual-echo Dixon readout with a variable density Cartesian trajectory with acceleration factor of 3 is proposed. Image navigators are acquired to correct both inversion recovery (IR)-prepared and reference volumes for 2D translational respiratory motion, enabling motion compensated PSIR reconstruction with 100% respiratory scan efficiency. An intermediate PSIR reconstruction is performed between the in-phase echoes to estimate the signal polarity which is subsequently applied to the IR-prepared water volume to generate a water grey-blood PSIR image. The IR-prepared water volume is obtained using a water/fat separation algorithm from the corresponding dual-echo readout. The complementary fat-volume is obtained after water/fat separation of the reference volume. Ten patients (6 with myocardial scar) were scanned with the proposed water/fat grey-blood 3D PSIR LGE sequence at 1.5 T and compared to breath-held grey-blood 2D LGE sequence in terms of contrast ratio (CR), contrast-to-noise ratio (CNR), scar depiction, scar transmurality, scar mass and image quality. Results Comparable CRs (p = 0.98, 0.40 and 0.83) and CNRs (p = 0.29, 0.40 and 0.26) for blood-myocardium, scar-myocardium and scar-blood respectively were obtained with the proposed free-breathing 3D water/fat LGE and 2D clinical LGE scan. Excellent agreement for scar detection, scar transmurality, scar mass (bias = 0.29%) and image quality scores (from 1: non-diagnostic to 4: excellent) of 3.8 ± 0.42 and 3.6 ± 0.69 (p > 0.99) were obtained with the 2D and 3D PSIR LGE approaches with comparable total acquisition time (p = 0.29). Similar agreement in intra and inter-observer variability were obtained for the 2D and 3D acquisition respectively. Conclusion The proposed approach enabled the acquisition of free-breathing motion-compensated isotropic-resolution 3D grey-blood PSIR LGE and fat volumes. The proposed approach showed good agreement with conventional 2D LGE in terms of CR, scar depiction and scan time, while enabling free-breathing acquisition, whole-heart coverage, reformatting in arbitrary views and visualization of both water and fat information.
- Item3D whole-heart isotropic sub-millimeter resolution coronary magnetic resonance angiography with non-rigid motion-compensated PROST.(2020) Bustin, Aurelien.; Botnar, René Michael; Prieto Vásquez, Claudia; Rashid, Imran.; Cruz, Gastao.; Hajhosseiny, R.; Correia, Teresa.; Neji, Radhouene.; Rajani, Ronak.; Ismail, Tevfik F.Abstract Background To enable free-breathing whole-heart sub-millimeter resolution coronary magnetic resonance angiography (CMRA) in a clinically feasible scan time by combining low-rank patch-based undersampled reconstruction (3D-PROST) with a highly accelerated non-rigid motion correction framework. Methods Non-rigid motion corrected CMRA combined with 2D image-based navigators has been previously proposed to enable 100% respiratory scan efficiency in modestly undersampled acquisitions. Achieving sub-millimeter isotropic resolution with such techniques still requires prohibitively long acquisition times. We propose to combine 3D-PROST reconstruction with a highly accelerated non-rigid motion correction framework to achieve sub-millimeter resolution CMRA in less than 10 min. Ten healthy subjects and eight patients with suspected coronary artery disease underwent 4–5-fold accelerated free-breathing whole-heart CMRA with 0.9 mm3 isotropic resolution. Vessel sharpness, vessel length and image quality obtained with the proposed non-rigid (NR) PROST approach were compared against translational correction only (TC-PROST) and a previously proposed NR motion-compensated technique (non-rigid SENSE) in healthy subjects. For the patient study, image quality scoring and visual comparison with coronary computed tomography angiography (CCTA) were performed. Results Average scan times [min:s] were 6:01 ± 0:59 (healthy subjects) and 8:29 ± 1:41 (patients). In healthy subjects, vessel sharpness of the left anterior descending (LAD) and right (RCA) coronary arteries were improved with the proposed non-rigid PROST (LAD: 51.2 ± 8.8%, RCA: 61.2 ± 9.1%) in comparison to TC-PROST (LAD: 43.8 ± 5.1%, P = 0.051, RCA: 54.3 ± 8.3%, P = 0.218) and non-rigid SENSE (LAD: 46.1 ± 5.8%, P = 0.223, RCA: 56.7 ± 9.6%, P = 0.50), although differences were not statistically significant. The average visual image quality score was significantly higher for NR-PROST (LAD: 3.2 ± 0.6, RCA: 3.3 ± 0.7) compared with TC-PROST (LAD: 2.1 ± 0.6, P = 0.018, RCA: 2.0 ± 0.7, P = 0.014) and non-rigid SENSE (LAD: 2.3 ± 0.5, P = 0.008, RCA: 2.5 ± 0.7, P = 0.016). In patients, the proposed approach showed good delineation of the coronaries, in agreement with CCTA, with image quality scores and vessel sharpness similar to that of healthy subjects. Conclusions We demonstrate the feasibility of combining high undersampling factors with non-rigid motion-compensated reconstruction to obtain high-quality sub-millimeter isotropic CMRA images in ~ 8 min. Validation in a larger cohort of patients with coronary artery disease is now warranted.
- Item3D whole-heart isotropic-resolution motion-compensated joint T-1/T(2)mapping and water/fat imaging(2020) Milotta, Giorgia; Bustin, Aurelien; Jaubert, Olivier; Neji, Radhouene; Prieto Vásquez, Claudia; Botnar, René MichaelPurpose To develop a free-breathing isotropic-resolution whole-heart joint T1 and T2 mapping sequence with Dixon-encoding that provides coregistered 3D T1 and T2 maps and complementary 3D anatomical water and fat images in a single ~9 min scan. Methods Four interleaved dual-echo Dixon gradient echo volumes are acquired with a variable density Cartesian trajectory and different preparation pulses: 1) inversion recovery-preparation, 2) and 3) no preparations, and 4) T2 preparation. Image navigators are acquired to correct each echo for 2D translational respiratory motion; the 8 echoes are jointly reconstructed with a low-rank patch-based reconstruction. A water/fat separation algorithm is used to obtain water and fat images for each acquired volume. T1 and T2 maps are generated by matching the signal evolution of the water images to a simulated dictionary. Complementary bright-blood and fat volumes for anatomical visualization are obtained from the T2-prepared dataset. The proposed sequence was tested in phantom experiments and 10 healthy subjects and compared to standard 2D MOLLI T1 mapping, 2D balance steady-state free precession T2 mapping, and 3D T2-prepared Dixon coronary MR angiography. Results High linear correlation was found between T1 and T2 quantification with the proposed approach and phantom spin echo measurements (y = 1.1 × −11.68, R2 = 0.98; and y = 0.85 × +5.7, R2 = 0.99). Mean myocardial values of T1/T2 = 1116 ± 30.5 ms/45.1 ± 2.38 ms were measured in vivo. Biases of T1/T2 = 101.8 ms/−0.77 ms were obtained compared to standard 2D techniques. Conclusion The proposed joint T1/T2 sequence permitted the acquisition of motion-compensated isotropic-resolution 3D T1 and T2 maps and complementary coronary MR angiography and fat volumes, showing promising results in terms of T1 and T2 quantification and visualization of cardiac anatomy and pericardial fat.
- Item3D whole-heart phase sensitive inversion recovery CMR for simultaneous black-blood late gadolinium enhancement and bright-blood coronary CMR angiography(2017) Ginami, Giulia; Neji, Radhouene; Rashid, Imran; Chiribiri, Amedeo; Ismail, Tevfik F; Botnar, René Michael; Prieto Vásquez, ClaudiaAbstract Background Phase sensitive inversion recovery (PSIR) applied to late gadolinium enhancement (LGE) imaging is widely used in clinical practice. However, conventional 2D PSIR LGE sequences provide sub-optimal contrast between scar tissue and blood pool, rendering the detection of subendocardial infarcts and scar segmentation challenging. Furthermore, the acquisition of a low flip angle reference image doubles the acquisition time without providing any additional diagnostic information. The purpose of this study was to develop and test a novel 3D whole-heart PSIR-like framework, named BOOST, enabling simultaneous black-blood LGE assessment and bright-blood visualization of cardiac anatomy. Methods The proposed approach alternates the acquisition of a 3D volume preceded by a T2-prepared Inversion Recovery (T2Prep-IR) module (magnitude image) with the acquisition of a T2-prepared 3D volume (reference image). The two volumes (T2Prep-IR BOOST and bright-blood T2Prep BOOST) are combined in a PSIR-like reconstruction to obtain a complementary 3D black-blood volume for LGE assessment (PSIR BOOST). The black-blood PSIR BOOST and the bright-blood T2Prep BOOST datasets were compared to conventional clinical sequences for scar detection and coronary CMR angiography (CMRA) in 18 patients with a spectrum of cardiovascular disease (CVD). Results Datasets from 12 patients were quantitatively analysed. The black-blood PSIR BOOST dataset provided statistically improved contrast to noise ratio (CNR) between blood and scar when compared to a clinical 2D PSIR sequence (15.8 ± 3.3 and 4.1 ± 5.6, respectively). Overall agreement in LGE depiction was found between 3D black-blood PSIR BOOST and clinical 2D PSIR acquisitions, with 11/12 PSIR BOOST datasets considered diagnostic. The bright-blood T2Prep BOOST dataset provided high quality depiction of the proximal coronary segments, with improvement of visual score when compared to a clinical CMRA sequence. Acquisition time of BOOST (~10 min), providing information on both LGE uptake and heart anatomy, was comparable to that of a clinical single CMRA sequence. Conclusions The feasibility of BOOST for simultaneous black-blood LGE assessment and bright-blood coronary angiography was successfully tested in patients with cardiovascular disease. The framework enables free-breathing multi-contrast whole-heart acquisitions with 100% scan efficiency and predictable scan time. Complementary information on 3D LGE and heart anatomy are obtained reducing examination time.Abstract Background Phase sensitive inversion recovery (PSIR) applied to late gadolinium enhancement (LGE) imaging is widely used in clinical practice. However, conventional 2D PSIR LGE sequences provide sub-optimal contrast between scar tissue and blood pool, rendering the detection of subendocardial infarcts and scar segmentation challenging. Furthermore, the acquisition of a low flip angle reference image doubles the acquisition time without providing any additional diagnostic information. The purpose of this study was to develop and test a novel 3D whole-heart PSIR-like framework, named BOOST, enabling simultaneous black-blood LGE assessment and bright-blood visualization of cardiac anatomy. Methods The proposed approach alternates the acquisition of a 3D volume preceded by a T2-prepared Inversion Recovery (T2Prep-IR) module (magnitude image) with the acquisition of a T2-prepared 3D volume (reference image). The two volumes (T2Prep-IR BOOST and bright-blood T2Prep BOOST) are combined in a PSIR-like reconstruction to obtain a complementary 3D black-blood volume for LGE assessment (PSIR BOOST). The black-blood PSIR BOOST and the bright-blood T2Prep BOOST datasets were compared to conventional clinical sequences for scar detection and coronary CMR angiography (CMRA) in 18 patients with a spectrum of cardiovascular disease (CVD). Results Datasets from 12 patients were quantitatively analysed. The black-blood PSIR BOOST dataset provided statistically improved contrast to noise ratio (CNR) between blood and scar when compared to a clinical 2D PSIR sequence (15.8 ± 3.3 and 4.1 ± 5.6, respectively). Overall agreement in LGE depiction was found between 3D black-blood PSIR BOOST and clinical 2D PSIR acquisitions, with 11/12 PSIR BOOST datasets considered diagnostic. The bright-blood T2Prep BOOST dataset provided high quality depiction of the proximal coronary segments, with improvement of visual score when compared to a clinical CMRA sequence. Acquisition time of BOOST (~10 min), providing information on both LGE uptake and heart anatomy, was comparable to that of a clinical single CMRA sequence. Conclusions The feasibility of BOOST for simultaneous black-blood LGE assessment and bright-blood coronary angiography was successfully tested in patients with cardiovascular disease. The framework enables free-breathing multi-contrast whole-heart acquisitions with 100% scan efficiency and predictable scan time. Complementary information on 3D LGE and heart anatomy are obtained reducing examination time.Abstract Background Phase sensitive inversion recovery (PSIR) applied to late gadolinium enhancement (LGE) imaging is widely used in clinical practice. However, conventional 2D PSIR LGE sequences provide sub-optimal contrast between scar tissue and blood pool, rendering the detection of subendocardial infarcts and scar segmentation challenging. Furthermore, the acquisition of a low flip angle reference image doubles the acquisition time without providing any additional diagnostic information. The purpose of this study was to develop and test a novel 3D whole-heart PSIR-like framework, named BOOST, enabling simultaneous black-blood LGE assessment and bright-blood visualization of cardiac anatomy. Methods The proposed approach alternates the acquisition of a 3D volume preceded by a T2-prepared Inversion Recovery (T2Prep-IR) module (magnitude image) with the acquisition of a T2-prepared 3D volume (reference image). The two volumes (T2Prep-IR BOOST and bright-blood T2Prep BOOST) are combined in a PSIR-like reconstruction to obtain a complementary 3D black-blood volume for LGE assessment (PSIR BOOST). The black-blood PSIR BOOST and the bright-blood T2Prep BOOST datasets were compared to conventional clinical sequences for scar detection and coronary CMR angiography (CMRA) in 18 patients with a spectrum of cardiovascular disease (CVD). Results Datasets from 12 patients were quantitatively analysed. The black-blood PSIR BOOST dataset provided statistically improved contrast to noise ratio (CNR) between blood and scar when compared to a clinical 2D PSIR sequence (15.8 ± 3.3 and 4.1 ± 5.6, respectively). Overall agreement in LGE depiction was found between 3D black-blood PSIR BOOST and clinical 2D PSIR acquisitions, with 11/12 PSIR BOOST datasets considered diagnostic. The bright-blood T2Prep BOOST dataset provided high quality depiction of the proximal coronary segments, with improvement of visual score when compared to a clinical CMRA sequence. Acquisition time of BOOST (~10 min), providing information on both LGE uptake and heart anatomy, was comparable to that of a clinical single CMRA sequence. Conclusions The feasibility of BOOST for simultaneous black-blood LGE assessment and bright-blood coronary angiography was successfully tested in patients with cardiovascular disease. The framework enables free-breathing multi-contrast whole-heart acquisitions with 100% scan efficiency and predictable scan time. Complementary information on 3D LGE and heart anatomy are obtained reducing examination time.
- ItemA multi-scale variational neural network for accelerating motion-compensated whole-heart 3D coronary MR angiography(2020) Fuin, N.; Bustin, A.; Kustner, T.; Oksuz, I.; Clough, J.; King, A. P.; Schnabel, J. A.; Botnar, René Michael; Prieto Vásquez, Claudia
- ItemA Survey on Deep Learning and Explainability for Automatic Report Generation from Medical Images(2022) Messina, Pablo; Pino, Pablo; Parra Santander, Denis; Soto Arriaza, Álvaro Marcelo; Besa, Cecilia; Uribe Arancibia, Sergio A.; Andía Kohnenkampf, Marcelo Edgardo; Tejos Núñez, Cristián Andrés; Prieto Vásquez, Claudia; Capurro, Daniel
- ItemAccelerated free-breathing whole-heart 3D T-2 mapping with high isotropic resolution(2020) Bustin, A.; Milotta, G.; Ismail, T. F.; Neji, R.; Botnar, René Michael; Prieto Vásquez, Claudia
- ItemAccelerated high-resolution free-breathing 3D whole-heart T2-prepared black-blood and bright-blood cardiovascular magnetic resonance(2020) Correia, Teresa; Botnar, René Michael; Prieto Vásquez, Claudia; Ginami, Giulia; Rashid, Imran; Nordio, Giovanna; Hajhosseiny, R.; Ismail, Tevfik F.; Neji, RadhoueneAbstract Background The free-breathing 3D whole-heart T2-prepared Bright-blood and black-blOOd phase SensiTive inversion recovery (BOOST) cardiovascular magnetic resonance (CMR) sequence was recently proposed for simultaneous bright-blood coronary CMR angiography and black-blood late gadolinium enhancement (LGE) imaging. This sequence enables simultaneous visualization of cardiac anatomy, coronary arteries and fibrosis. However, high-resolution (< 1.4 × 1.4 × 1.4 mm3) fully-sampled BOOST requires long acquisition times of ~ 20 min. Methods In this work, we propose to extend a highly efficient respiratory-resolved motion-corrected reconstruction framework (XD-ORCCA) to T2-prepared BOOST to enable high-resolution 3D whole-heart coronary CMR angiography and black-blood LGE in a clinically feasible scan time. Twelve healthy subjects were imaged without contrast injection (pre-contrast BOOST) and 10 patients with suspected cardiovascular disease were imaged after contrast injection (post-contrast BOOST). A quantitative analysis software was used to compare accelerated pre-contrast BOOST against the fully-sampled counterpart (vessel sharpness and length of the left and right coronary arteries). Moreover, three cardiologists performed diagnostic image quality scoring for clinical 2D LGE and both bright- and black-blood 3D BOOST imaging using a 4-point scale (1–4, non-diagnostic–fully diagnostic). A two one-sided test of equivalence (TOST) was performed to compare the pre-contrast BOOST images. Nonparametric TOST was performed to compare post-contrast BOOST image quality scores. Results The proposed method produces images from 3.8 × accelerated non-contrast-enhanced BOOST acquisitions with comparable vessel length and sharpness to those obtained from fully- sampled scans in healthy subjects. Moreover, in terms of visual grading, the 3D BOOST LGE datasets (median 4) and the clinical 2D counterpart (median 3.5) were found to be statistically equivalent (p < 0.05). In addition, bright-blood BOOST images allowed for visualization of the proximal and middle left anterior descending and right coronary sections with high diagnostic quality (mean score > 3.5). Conclusions The proposed framework provides high‐resolution 3D whole-heart BOOST images from a single free-breathing acquisition in ~ 7 min.
- ItemAccelerated magnetic resonance fingerprinting using soft-weighted key-hole (MRF-SOHO)(2018) Cruz, Gastao; Schneider, Torben; Bruijnen, Tom; Gaspar, Andreia S.; Botnar, Rene A. M.; Prieto Vásquez, Claudia
- ItemAccelerated motion corrected three-dimensional abdominal MRI. using total variation regularized SENSE. reconstruction(2016) Cruz, Gastao; Atkinson, David; Buerger, Christian; Schaeffter, Tobias; Prieto Vásquez, Claudia
- ItemAccelerating dual cardiac phase images using undersampled radial phase encoding trajectories(2013) Letelier Farías, Karis del Pilar; Uribe Arancibia, Sergio A.; Prieto Vásquez, Claudia; Pontificia Universidad Católica de Chile. Escuela de IngenieríaUn examen de 3D Dual Cardiac Phase (3D-DCP) se ha propuesto para obtener imágenes completas de corazón a final de sístole a final de diástole. En este trabajo proponemos acelerar el tiempo de adquisición y reconstrucción del método 3D-DCP al compartir información del exterior del espacio-K de ambas fases cardíacas usando una trayectoria modificada de Radial Phase Encoding y reconstrucción Gridding con combinación uniforme de bobinas. Datos totalmente muestreados fueron submuestreadas retrospectivamente y diferentes porcentajes del exterior del espacio-K fueron mezclados para determinar el porcentaje de información redundante existente entre ambas fases cardíacas. Posteriormente, datos submuestreadas prospectivamente fueron reconstruidos basados en el porcentaje de información redundante encontrado. Las imágenes usadas como gold standard fueron datos submuestreados y reconstruidos usando iterative SENSE. Se realizó una prueba de calidad de imagen y análisis del volumen cardíaco para validar los resultados.
- ItemAccelerating the acquisition of the 3D Dual Cardiac Phase technique using RPE trajectories(2014) Letelier Farías, Karis del Pilar; Andía Kohnenkampf, Marcelo Edgardo; Tejos Núñez, Cristián Andrés; Irarrázaval Mena, Pablo; Prieto Vásquez, Claudia; Uribe Arancibia, Sergio A.
- ItemAccelerating three-dimensional molecular cardiovascular MR imaging using compressed sensing(2012) Prieto Vásquez, Claudia; Andia, Marcelo E.; von Bary, Christian; Onthank, David C.; Schaeffter, Tobias; Botnar, René Michael
- ItemAutomated detection of cardiac rest period for trigger delay calculation for image-based navigator coronary magnetic resonance angiography(NLM (Medline), 2023) Wood, Gregory; Uglebjerg Pedersen, Alexandra; Kunze, Karl P; Neji, Radhouene; Hajhosseiny, Reza; Wetzl, Jens; Yoon, Seung Su; Schmidt, Michaela; Norgaard, Bjarne Linde; Prieto Vásquez, Claudia; Botnar, René Michael; Kim, Won YongBACKGROUND: Coronary magnetic resonance angiography (coronary MRA) is increasingly being considered as a clinically viable method to investigate coronary artery disease (CAD). Accurate determination of the trigger delay to place the acquisition window within the quiescent part of the cardiac cycle is critical for coronary MRA in order to reduce cardiac motion. This is currently reliant on operator-led decision making, which can negatively affect consistency of scan acquisition. Recently developed deep learning (DL) derived software may overcome these issues by automation of cardiac rest period detection. METHODS: Thirty individuals (female, n = 10) were investigated using a 0.9 mm isotropic image-navigator (iNAV)-based motion-corrected coronary MRA sequence. Each individual was scanned three times utilising different strategies for determination of the optimal trigger delay: (1) the DL software, (2) an experienced operator decision, and (3) a previously utilised formula for determining the trigger delay. Methodologies were compared using custom-made analysis software to assess visible coronary vessel length and coronary vessel sharpness for the entire vessel length and the first 4 cm of each vessel. RESULTS: There was no difference in image quality between any of the methodologies for determination of the optimal trigger delay, as assessed by visible coronary vessel length, coronary vessel sharpness for each entire vessel and vessel sharpness for the first 4 cm of the left mainstem, left anterior descending or right coronary arteries. However, vessel length of the left circumflex was slightly greater using the formula method. The time taken to calculate the trigger delay was significantly lower for the DL-method as compared to the operator-led approach (106 ± 38.0 s vs 168 ± 39.2 s, p < 0.01, 95% CI of difference 25.5-98.1 s). CONCLUSIONS: Deep learning-derived automated software can effectively and efficiently determine the optimal trigger delay for acquisition of coronary MRA and thus may simplify workflow and improve reproducibility.
- ItemCalcium (Ca2+) waves data calibration and analysis using image processing techniques(2013) Milovic Fabregat, Carlos Andrés; Oses, Carolina; Villalón, Manuel J.; Uribe Arancibia, Sergio A.; Prieto Vásquez, Claudia; Andía Kohnenkampf, Marcelo Edgardo; Irarrázaval Mena, Pablo; Tejos Núñez, Cristián Andrés; Lizama, CarlosAbstract Background Calcium (Ca2+) propagates within tissues serving as an important information carrier. In particular, cilia beat frequency in oviduct cells is partially regulated by Ca2+ changes. Thus, measuring the calcium density and characterizing the traveling wave plays a key role in understanding biological phenomena. However, current methods to measure propagation velocities and other wave characteristics involve several manual or time-consuming procedures. This limits the amount of information that can be extracted, and the statistical quality of the analysis. Results Our work provides a framework based on image processing procedures that enables a fast, automatic and robust characterization of data from two-filter fluorescence Ca2+ experiments. We calculate the mean velocity of the wave-front, and use theoretical models to extract meaningful parameters like wave amplitude, decay rate and time of excitation. Conclusions Measurements done by different operators showed a high degree of reproducibility. This framework is also extended to a single filter fluorescence experiments, allowing higher sampling rates, and thus an increased accuracy in velocity measurements.