Browsing by Author "Feischl, M."
Now showing 1 - 9 of 9
Results Per Page
Sort Options
- ItemAdaptive Boundary Element Methods A Posteriori Error Estimators, Adaptivity, Convergence, and Implementation(2015) Feischl, M.; Führer, Thomas; Heuer, Norbert; Karkulik, Michael; Praetorius, D.
- ItemAdaptive boundary element methods for optimal convergence of point errors(2016) Feischl, M.; Gantner, G.; Haberl, A.; Praetorius, D.; Führer, Thomas
- ItemEfficiency and optimality of some weighted-residual error estimator for adaptive 2D boundary element methods(2013) Aurada, M.; Feischl, M.; Führer, T.; Karkulik, Michael; Praetorius, D.We prove convergence and quasi-optimality of a lowest-order adaptive boundary element method for a weakly-singular integral equation in 2D. The adaptive mesh-refinement is driven by the weighted-residual error estimator. By proving that this estimator is not only reliable, but under some regularity assumptions on the given data also efficient on locally refined meshes, we characterize the approximation class in terms of the Galerkin error only. In particular, this yields that no adaptive strategy can do better, and the weighted-residual error estimator is thus an optimal choice to steer the adaptive mesh-refinement. As a side result, we prove a weak form of the saturation assumption.
- ItemLOCAL INVERSE ESTIMATES FOR NON-LOCAL BOUNDARY INTEGRAL OPERATORS(2017) Aurada, M.; Feischl, M.; Karkulik, Michael; Melenk, J.; Praetorius, D.; Führer, Thomas
- ItemOptimal additive Schwarz preconditioning for hypersingular integral equations on locally refined triangulations(2017) Feischl, M.; Führer, Thomas; Praetorius, D.; Stephan, E.
- ItemOptimal preconditioning for the symmetric and nonsymmetric coupling of adaptive finite elements and boundary elements(2017) Feischl, M.; Führer, Thomas; Praetorius, D.; Stephan, E.
- ItemQUASI-OPTIMAL CONVERGENCE RATE FOR AN ADAPTIVE BOUNDARY ELEMENT METHOD(2013) Feischl, M.; Karkulik, Michael; Melenk, J.; Praetorius, D.
- ItemQuasi-optimal convergence rates for adaptive boundary element methods with data approximation, part I : weakly-singular integral equation(2014) Feischl, M.; Fuehrer, T.; Karkulik, Michael; Melenk, J.; Praetorius, D.
- ItemStability of symmetric and nonsymmetric FEM-BEM couplings for nonlinear elasticity problems(2015) Feischl, M.; Führer, Thomas; Karkulik, Michael; Praetorius, D.