Browsing by Author "Fabrizio, M."
Now showing 1 - 7 of 7
Results Per Page
Sort Options
- ItemNew near-infrared JHKs light-curve templates for RR Lyrae variables(2019) Braga, V. F.; Stetson, P. B.; Bono, G.; Dall'Ora, M.; Ferraro, I; Fiorentino, G.; Iannicola, G.; Inno, L.; Marengo, M.; Neeley, J.; Beaton, R. L.; Buonanno, R.; Calamida, A.; Ramos, R. Contreras; Chaboyer, B.; Fabrizio, M.; Freedman, W. L.; Gilligan, C. K.; Johnston, K., V; Lub, J.; Madore, B. F.; Magurno, D.; Marconi, M.; Marinoni, S.; Marrese, P. M.; Mateo, M.; Matsunaga, N.; Minniti, D.; Monson, A. J.; Monelli, M.; Nonino, M.; Persson, S. E.; Pietrinferni, A.; Sneden, C.; Storm, J.; Walker, A. R.; Valenti, E.; Zoccali, M.We provide homogeneous optical (UBVRI) and near-infrared (NIR, JHK) time series photometry for 254 cluster (omega Cen, M 4) and field RR Lyrae (RRL) variables. We ended up with more than 551 000 measurements, of which only 9% are literature data. For 94 fundamental (RRab) and 51 first overtones (RRc) we provide a complete optical/NIR characterization (mean magnitudes, luminosity amplitudes, epoch of the anchor point). The NIR light curves of these variables were adopted to provide new light-curve templates for both RRc and RRab variables. The templates for the J and the H bands are newly introduced, together with the use of the pulsation period to discriminate among the different RRab templates. To overcome subtle uncertainties in the fit of secondary features of the light curves we provide two independent sets of analytical functions (Fourier and periodic Gaussian series). The new templates were validated by using 26 omega Cen and Bulge RRLs. We find that the difference between the measured mean magnitude along the light curve and the mean magnitude estimated by using the template on a single randomly extracted phase point is better than 0.01 mag (sigma = 0.04 mag). We also validated the template on variables for which at least three phase points were available, but without information on the phase of the anchor point. We find that the accuracy of the mean magnitudes is also similar to 0.01 mag (sigma = 0.04 mag). The new templates were applied to the Large Magellanic Cloud (LMC) globular cluster Reticulum and by using literature data and predicted PLZ relations we find true distance moduli mu = 18.47 +/- 0.10 (rand.) +/- 0.03 (syst.) mag (J) and 18.49 +/- 0.09 +/- 0.05 mag (K). We also used literature optical and mid-infrared data and we found a mean mu of 18.47 +/- 0.02 +/- 0.06 mag, suggesting that Reticulum is similar to 1 kpc closer than the LMC.
- ItemOn the Use of Field RR Lyrae as Galactic Probes. I. The Oosterhoff Dichotomy Based on Fundamental Variables(2019) Fabrizio, M.; Bono, G.; Braga, V.F.; Magurno, D.; Marinoni, S.; Marrese, P.M.; Ferraro, I.; Fiorentino, G.; Giuffrida, G.; Zoccali, Manuela; Iannicola, G.
- ItemOn the Use of Field RR Lyrae as Galactic Probes. II. A New ΔS Calibration to Estimate Their Metallicity*(2021) Crestani, J.; Fabrizio, M.; Braga, V. F.; Sneden, C.; Preston, G.; Ferraro, I.; Iannicola, G.; Bono, G.; Alves-Brito, A.; Nonino, M.; D'Orazi, V.; Inno, L.; Monelli, M.; Storm, J.; Altavilla, G.; Chaboyer, B.; Dall'Ora, M.; Fiorentino, G.; Gilligan, C.; Grebel, E. K.; Lala, H.; Lemasle, B.; Marengo, M.; Marinoni, S.; Marrese, P. M.; Martinez-Vazquez, C. E.; Matsunaga, N.; Mullen, J. P.; Neeley, J.; Prudil, Z.; da Silva, R.; Stetson, P. B.; Thevenin, F.; Valenti, E.; Walker, A.; Zoccali, M.We performed the largest and most homogeneous spectroscopic survey of field RR Lyraes (RRLs). We secured 6300 high-resolution (HR, R similar to 35,000) spectra for 143 RRLs (111 fundamental, RRab; 32 first-overtone, RRc). The atmospheric parameters were estimated by using the traditional approach and the iron abundances were measured by using an LTE line analysis. The resulting iron distribution shows a well-defined metal-rich tail approaching solar iron abundance. This suggests that field RRLs experienced a complex chemical enrichment in the early halo formation. We used these data to develop a new calibration of the Delta S method. This diagnostic, based on the equivalent widths of Ca ii K and three Balmer (H-delta,H-gamma,H-beta) lines, traces the metallicity of RRLs. For the first time, the new empirical calibration: (i) includes spectra collected over the entire pulsation cycle; (ii) includes RRc variables; (iii) relies on spectroscopic calibrators covering more than three dex in iron abundance; and (iv) provides independent calibrations based on one/two/three Balmer lines. The new calibrations were applied to a data set of both SEGUE-SDSS and degraded HR spectra totalling 6451 low-resolution (R similar to 2000) spectra for 5001 RRLs (3439 RRab, 1562 RRc). This resulted in an iron distribution with a median eta = -1.55 0.01 and sigma = 0.51 dex, in good agreement with literature values. We also found that RRc are 0.10 dex more metal-poor than RRab variables, and have a distribution with a smoother metal-poor tail. This finding supports theoretical prescriptions suggesting a steady decrease in the RRc number when moving from metal-poor to metal-rich stellar environments.
- ItemOn the Use of Field RR Lyrae as Galactic Probes. III. The α-element Abundances*(2021) Crestani, J.; Braga, V. F.; Fabrizio, M.; Bono, G.; Sneden, C.; Preston, G.; Ferraro, I.; Iannicola, G.; Nonino, M.; Fiorentino, G.; Thevenin, F.; Lemasle, B.; Prudil, Z.; Alves-Brito, A.; Altavilla, G.; Chaboyer, B.; Dall'Ora, M.; D'Orazi, V.; Gilligan, C.; Grebel, E. K.; Koch-Hansen, A. J.; Lala, H.; Marengo, M.; Marinoni, S.; Marrese, P. M.; Martinez-Vazquez, C.; Matsunaga, N.; Monelli, M.; Mullen, J. P.; Neeley, J.; da Silva, R.; Stetson, P. B.; Salaris, M.; Storm, J.; Valenti, E.; Zoccali, M.We provide the largest and most homogeneous sample of alpha-element (Mg, Ca, Ti) and iron abundances for field RR Lyrae (RRLs; 162 variables) by using high-resolution spectra. The current measurements were complemented with similar abundances available in the literature for 46 field RRLs brought to our metallicity scale. We ended up with a sample of old (t >= 10 Gyr), low-mass stellar tracers (208 RRLs: 169 fundamental, 38 first overtone, and 1 mixed mode) covering 3 dex in iron abundance (-3.00 <= [Fe/H] <= 0.24). We found that field RRLs are similar to 0.3 dex more alpha poor than typical halo tracers in the metal-rich regime ([Fe/H] >= -1.2), while in the metal-poor regime ([Fe/H] <= -2.2) they seem to be on average similar to 0.1 dex more alpha enhanced. This is the first time that the depletion in alpha elements for solar iron abundances is detected on the basis of a large, homogeneous, and coeval sample of old stellar tracers. Interestingly, we also detected a close similarity in the [alpha/Fe] trend between alpha-poor, metal-rich RRLs and red giants (RGs) in the Sagittarius dwarf galaxy as well as between alpha-enhanced, metal-poor RRLs and RGs in ultrafaint dwarf galaxies. These results are supported by similar elemental abundances for 46 field horizontal branch stars. These stars share with RRLs the same evolutionary phase and the same progenitors. This evidence further supports the key role that old stellar tracers play in constraining the early chemical enrichment of the halo and, in particular, in investigating the impact that dwarf galaxies have had in the mass assembly of the Galaxy.
- ItemOn the Use of Field RR Lyrae as Galactic Probes. V. Optical and Radial Velocity Curve Templates(2021) Braga, V. F.; Crestani, J.; Fabrizio, M.; Bono, G.; Sneden, C.; Preston, G. W.; Storm, J.; Kamann, S.; Latour, M.; Lala, H.; Lemasle, B.; Prudil, Z.; Altavilla, G.; Chaboyer, B.; Dall'Ora, M.; Ferraro, I; Gilligan, C. K.; Fiorentino, G.; Iannicola, G.; Inno, L.; Kwak, S.; Marengo, M.; Marinoni, S.; Marrese, P. M.; Martinez-Vazquez, C. E.; Monelli, M.; Mullen, J. P.; Matsunaga, N.; Neeley, J.; Stetson, P. B.; Valenti, E.; Zoccali, M.We collected the largest spectroscopic catalog of RR Lyrae (RRLs) including approximate to 20,000 high-, medium-, and low-resolution spectra for approximate to 10,000 RRLs. We provide the analytical forms of radial velocity curve (RVC) templates. These were built using 36 RRLs (31 fundamental-split into three period bins-and five first-overtone pulsators) with well-sampled RVCs based on three groups of metallic lines (Fe, Mg, Na) and four Balmer lines (H- alpha , H- beta , H- gamma , H- delta ). We tackled the long-standing problem of the reference epoch to anchor light-curve and RVC templates. For the V-band, we found that the residuals of the templates anchored to the phase of the mean magnitude along the rising branch are similar to 35% to similar to 45% smaller than those anchored to the phase of maximum light. For the RVC, we used two independent reference epochs for metallic and Balmer lines and we verified that the residuals of the RVC templates anchored to the phase of mean RV are from 30% (metallic lines) up to 45% (Balmer lines) smaller than those anchored to the phase of minimum RV. We validated our RVC templates by using both the single-point and the three phase point approaches. We found that barycentric velocities based on our RVC templates are two to three times more accurate than those available in the literature. We applied the current RVC templates to Balmer lines RVs of RRLs in the globular NGC 3201 collected with MUSE at VLT. We found the cluster barycentric RV of V ( gamma ) = 496.89 +/- 8.37(error) +/- 3.43 (standard deviation) km s(-1), which agrees well with literature estimates.
- ItemStromgren and near-infrared photometry of metal-rich bulge globular clusters I. NGC 6528 and its surrounding field(2014) Calamida, A.; Bono, G.; Lagioia, E.P.; Milone, A.P.; Fabrizio, M.; Saviane, I.; Moni Bidin, C.; Mauro, F.; Buonanno, R.; Zoccali, Manuela
- ItemunVEil the darknesS of The gAlactic buLgE (VESTALE)(2018) Bono, G.; Dall'Ora, M.; Fabrizio, M.; Crestani, J.; Braga, V. F.; Fiorentino, G.; Altavilla, G.; Botticella, M. T.; Calamida, A.; Castellani, M.; Catelan, Marcio; Chaboyer, B.; Chiappini, C.; Clarkson, W.; Contreras Ramos, R.; Creevey, O.; da Silva, R.; Debattista, V.; Degl'Innocenti, S.; Ferraro, I.; Gilligan, C. K.; Gonzalez, O.; Hambleton, K.; Iannicola, G.; Inno, L.; Kunder, A.; Lemasle, B.; Magrini, L.; Magurno, D.; Marconi, M.; Marengo, M.; Marinoni, S.; Marrese, P. M.; Martinez-Vazquez, C. E.; Matsunaga, N.; Monelli, M.; Prada Moroni, P. G.; Musella, I.; Navarro, M. G.; Neeley, J.; Nonino, M.; Pietrinferni, A.; Pulone, L.; Rich, M. R.; Ripepi, V.; Sacco, G.; Saha, A.; Salaris, M.; Sneden, C.; Stetson, P. B.; Street, R. A; Szabo, R.; Tantalo, M.; Tognelli, E.; Torelli, M.; Valenti, E.; Walker, A. R.; Zoccali, M.The main aim of this experiment is to provide a complete census of old (t > 10 Gyr, RR Lyrae, type II Cepheids, red horizontal branch), intermediate age (red clump, Miras) and young (classical Cepheids) stellar tracers across the Galactic Bulge. To fully exploit the unique photometric quality of LSST images, we plan to perform a Shallow minisurvey (ugrizy, -20 < l < 20 deg, -15 < b < 10 deg) and a Deep minisurvey (izy, -20 < l < 20 deg, -3 < b < 3 deg). The former one is aimed at constraining the 3D structure of the galactic Bulge across the four quadrants, and in particular, the transition between inner and outer Bulge. The u,g,r,i,z,y LSST bands provide fundamental diagnostics to constrain the evolutionary properties of low and intermediate-mass stars when moving from a metal-poor to a metal-rich regime. The deep minisurvey is aimed at tracing RR Lyrae, Red Clump stars, Miras and classical Cepheids in highly reddened regions of the Galactic center. These images will allow us to investigate the role that baryonic mass and dark matter played in the early formation and evolution of the MW....