Browsing by Author "Bourget, Olivier"
Now showing 1 - 16 of 16
Results Per Page
Sort Options
- ItemChirality induced interface currents in the Chalker-Goddington model(2019) Asch, Joachim; Bourget, Olivier; Joye, Alain
- ItemCommutation relations for unitary operators I(2015) Astaburuaga Eguiguren, María Angélica; Bourget, Olivier; Cortés Momberg, Víctor Hugo
- ItemCommutation relations for unitary operators II(2015) Astaburuaga Eguiguren, María Angélica; Bourget, Olivier; Cortés Momberg, Víctor Hugo
- ItemConstruction of solutions for some localized nonlinear schrodinger equations(2019) Bourget, Olivier; Courdurier Bettancourt, Matías Alejandro; Fernández Jaña, Claudio Alonso
- ItemDynamical Localization for the One-Dimensional Continuum Anderson Model in a Decaying Random Potential(2020) Bourget, Olivier; Moreno Flores, Gregorio Rolando; Taarabt, Amal
- ItemDynamical Localization of the Chalker-Coddington Model far from Transition(2012) Asch, Joachim; Bourget, Olivier; Joye, AlainWe study a quantum network percolation model which is numerically pertinent to the understanding of the delocalization transition of the quantum Hall effect. We show dynamical localization for parameters corresponding to edges of Landau bands, away from the expected transition point.
- ItemEnergy-Time Uncertainty Principle and Lower Bounds on Sojourn Time(2016) Asch, J.; Bourget, Olivier; Cortés Momberg, Víctor Hugo; Fernández Jaña, Claudio Alonso
- ItemLocalization Properties of the Chalker-Coddington Model(BIRKHAUSER VERLAG AG, 2010) Asch, Joachim; Bourget, Olivier; Joye, AlainThe Chalker-Coddington quantum network percolation model is numerically pertinent to the understanding of the delocalization transition of the quantum Hall effect. We study the model restricted to a cylinder of perimeter 2M. We prove first that the Lyapunov exponents are simple and in particular that the localization length is finite; secondly, that this implies spectral localization. Thirdly, we prove a Thouless formula and compute the mean Lyapunov exponent, which is independent of M.
- ItemOn absolutely continuous spectrum for one-channel unitary operators(2024) Bourget, Olivier; Moreno, Gregorio; Sadel, Christian; Taarabt, AmalIn this paper, we develop the radial transfer matrix formalism for unitary one-channel operators. This generalizes previous formalisms for CMV matrices and scattering zippers. We establish an analog of Carmona's formula and deduce criteria for absolutely continuous spectrum which we apply to random Hilbert Schmidt perturbations of periodic scattering zippers.
- ItemOn embedded bound states of unitary operators and their regularity(2013) Bourget, Olivier
- ItemOn stable quantum currents(2020) Asch, J.; Bourget, Olivier; Joye, A.
- ItemOn the spectral properties of non-selfadjoint discrete Schrödinger operators(2020) Bourget, Olivier; Sambou, D.; Taarabt, Amal
- ItemOne-dimensional Discrete Dirac Operators in a Decaying Random Potential I : Spectrum and Dynamics(2020) Bourget, Olivier; Moreno Flores, Gregorio Rolando; Taarabt, Amal
- ItemResonances under rank-one perturbations(2017) Bourget, Olivier; Cortés Momberg, Víctor Hugo; Del Río, R.; Fernández Jaña, Claudio Alonso
- ItemSpectral stability for compact perturbations of Toeplitz matrices(2016) Astaburuaga Eguiguren, María Angélica; Bourget, Olivier; Cortés Momberg, Víctor Hugo
- ItemStability of the Electron Cyclotron Resonance(2016) Asch, Joachim; Bourget, Olivier; Meresse, Cédric