3.10 Facultad de Física
Permanent URI for this community
Browse
Browsing 3.10 Facultad de Física by Author "Bauer, Franz Erik"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
- ItemCharacterization of extragalactic fast X-ray transients from X-ray archival searches(2023) Quirola Vasquez, Jonathan Alexander; Bauer, Franz Erik; Jonker, Peter; Pontificia Universidad Católica de Chile. Instituto de AstrofísicaExtragalactic fast X-ray transients (FXTs) are non-Galactic short flashes of X-ray photons (in the narrow range of ≈0.3–10 keV) of unclear origin that last a few minutes to hours. A variety of astronomical objects and physical mechanisms have been proposed for the origin of extragalactic FXTs, such as core-collapse SNe shock breakout (SBOs), gamma-ray bursts (GRBs), and intermediate massive black holes (IMBH)-white dwarf (WD) tidal disruption events. During the last two decades, several FXTs have been detected by Chandra, XMM-Newton, and Swift-XRT, serendipitously (for instance, Soderberg et al. 2008; Bauer et al. 2017; Xue et al. 2019; Alp & Larsson 2020; Lin et al. 2022). Previously, Yang et al. (2019) developed a method that can efficiently detect single X-ray burst light curves in a single Chandra exposure, and systematically applied it to ≈19 Ms Chandra. While this method efficiently detected all past known FXTs (2), it failed to find any new FXT candidates, setting loose bounds on their space densities. The main objective of this thesis is to identify and characterize extragalactic FXTs hidden in the Chandra archive. We apply here two modified versions of the algorithm developed by Yang et al. 2019 to X-ray sources located at |b|>10 deg (i.e., 14281 Chandra observations, totaling ≈258 Ms and 857 deg 2 ) to minimize stellar flares contamination. In Chapter 2, we consider the X-ray sources of the Chandra Source Catalog 2.0 (data available until the end of 2014; CSC2). In Chapter 3, we extend our systematic search by reprocessing the Chandra data not covered by CSC2. In both instances, we adopt additional criteria to rule out strong contamination from persistent X-ray sources (analyzing further X-ray observations taken by Chandra, XMM-Newton, Swift–XRT, Einstein, and ROSAT, and considering other astronomical catalogs such as Gaia, NED, SIMBAD, VHS, DES, Pan-STARRS), in order to identify 22 FXTs (14 and 8 FXTs identified inside CSC2 and beyond it, respectively) consistent with an extragalactic origin. We rediscover all previously reported Chandra events from the literature (Jonker et al. 2013; Glennie et al. 2015; Bauer et al. 2017; Xue et al. 2019; Lin et al. 2019, 2021, 2022). The 22 FXT candidates have peak 0.3–10 keV fluxes between F X,peak ≈6×10^−14 to 2×10^−10 erg cm−2 s−1 and T 90 durations from ≈0.3 to 40 ks. The sample is split into two groups: five "nearby" FXTs that occurred within d≲100 Mpc, and 17 "distant" FXTs at d>100 Mpc. Indeed, the latter have redshifts between ≈0.3 to 2.2. Thus, the local and distant samples have associated peak X-ray luminosities of L X,peak ≈10^39 − 10^40 and 10^44 − 10^47 erg s−1, respectively. After applying completeness corrections, we calculate the first FXT X-ray luminosity function and derive event rates for the nearby and distant samples of 34.3_{−10.8}^{+13.7} and 36.9_{−8.3}^{+9.7} deg-2 yr−1, respectively, for a limiting flux of Fpeak=10^−13 erg cm−2 s−1. We compare the volumetric density rate of FXTs with well-known transient classes such as SBOs, GRBs, and TDEs, concluding that FXTs remain broadly consistent with different transients at distinct cosmic epochs. Regarding their host properties, local hosts tend to lie just below the star-forming main sequence, with many FXTs situated in or near HII regions, implying some relation to massive stars. On the other hand, distant hosts tend to be spread all over (starburst, main sequence, and green valley regions), potentially consistent with GRB and SNe hosts. Timing and spectral properties, combined with other properties such as galactic parameters and volumetric rates, might imply that we have a mix of origins related to this novel sample of FXTs. Finally, in Chapter 4 we interpret a subset of nine FXTs with plateau or fast-rise light curves in the context of an X-ray magnetar model produced after the merger of two neutron stars. The model produces good fits to the light curves of this sub-sample, and the best-fit magnetar parameters suggest a common origin. Although the interpretation is consistent with most of the observational parameters, exploring other scenarios remains a necessary future task.