Growth Dynamics in a Mechanical Model of Cellular Colonies

dc.catalogadorgjm
dc.contributor.advisorDüring, Gustavo
dc.contributor.authorÁlvarez Murphy, Fidel Gerardo
dc.contributor.otherPontificia Universidad Católica de Chile. Instituto de Física
dc.date.accessioned2024-07-22T20:00:05Z
dc.date.available2024-07-22T20:00:05Z
dc.date.issued2024
dc.date.updated2024-07-19T14:55:44Z
dc.descriptionTesis (Master’s degree in Physics)--Pontificia Universidad Católica de Chile, 2024.
dc.description.abstractCellular colonies are structures of microorganisms that remain attached toeach other and/or to a surface. To study the effects of mechanical stress on thedynamics of a growing colony, a minimal discrete physical model of these cellu-lar systems is proposed considering only microscopic quantities from mechanicalforces, and a cell growth and division process. Using simulations that model thediscrete model evolution, macroscopic dynamics of contact and growth withinnon-motile circular-shaped cell colonies are successfully reproducible. To find alink between the microscopic quantities involved in the dynamics and the macro-scopic observables, an out-of-equilibrium continuum theory is developed.Theobserved dynamics in the discrete model are accurately described by the contin-uum theory at the mesoscopic limit, describing along the colony the existenceof maximum inner pressure and velocity as a function of microscopic quantities.Particularly, a constitutive relation between velocity and inter-particle overlapis found, describing that the growth dynamics of a colony are equivalent in twospatial configurations: a free and a channel-limited expansion. As a second partof this work, given the dynamics of the system, a competitive genetic surfingdynamic is studied considering two different cell strains in the channel-limitedconfiguration. The observed genetic surf shows a frequency distribution of domi-nance between strains that transits from an exponential law with exponent ´3{2to a log-normal distribution depending on the initial strain relative proportionand the channel width, suggesting that this system’s competitive dynamics canbe described by mean-field theories that describe growth processes.
dc.fechaingreso.objetodigital2024-07-22
dc.format.extent64 páginas
dc.fuente.origenAutoarchivo
dc.identifier.doi10.7764/tesisUC/FIS/87203
dc.identifier.urihttps://doi.org/10.7764/tesisUC/FIS/87203
dc.identifier.urihttps://repositorio.uc.cl/handle/11534/87203
dc.information.autorucInstituto de Física; Düring, Gustavo; S/I; 1012766
dc.information.autorucInstituto de Física; Álvarez Murphy, Fidel Gerardo; S/I; 1064542
dc.language.isoen
dc.nota.accesocontenido completo
dc.rightsacceso abierto
dc.rights.licenseAtribución-CompartirIgual 4.0 Internacional (CC BY-SA 4.0)
dc.rights.urihttps://creativecommons.org/licenses/by-sa/4.0/deed.es
dc.subject.ddc510
dc.subject.deweyMatemática física y químicaes_ES
dc.titleGrowth Dynamics in a Mechanical Model of Cellular Colonies
dc.typetesis de maestría
sipa.codpersvinculados1012766
sipa.codpersvinculados1064542
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
TESIS__MASTER___Fidel_Álvarez-1.pdf
Size:
6.19 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.98 KB
Format:
Item-specific license agreed upon to submission
Description: