Self-assembly of submonolayer-coverage organic films

Loading...
Thumbnail Image
Date
2009
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
In this work we present a study of self assembled submonolayer coverage organic films. The types of molecules studied here are n-alkane chains, mainly n-dotriacontane (n-C32H66), that are deposited on silicon substrates with a thin native silicon oxide layer (∼15Å). In this research we have developed a velocity controlled dip-coating device to prepare submonolayer films. We have identified the parameters that affect the coverage, morphology and structures that arise in the preparation of the film. The techniques used to characterize these films are Atomic Force Microscopy (AFM), Scanning Electron Microscopy (SEM) and Energy Dispersive Spectroscopy (EDS). Fur- thermore, this is the first work that demonstrates that SEM is a plausible technique to study thin films of n-alkanes. The future importance of this research is related to the possibility of micro-structuring energetically homogenous surfaces with nanometer thick films using relatively simple techniques, such as velocity controlled dip-coating. Micro-structured patterns, such as the stripes reported here, could be applied as optical diffraction grids or as templates for other materials.In this work we present a study of self assembled submonolayer coverage organic films. The types of molecules studied here are n-alkane chains, mainly n-dotriacontane (n-C32H66), that are deposited on silicon substrates with a thin native silicon oxide layer (∼15Å). In this research we have developed a velocity controlled dip-coating device to prepare submonolayer films. We have identified the parameters that affect the coverage, morphology and structures that arise in the preparation of the film. The techniques used to characterize these films are Atomic Force Microscopy (AFM), Scanning Electron Microscopy (SEM) and Energy Dispersive Spectroscopy (EDS). Fur- thermore, this is the first work that demonstrates that SEM is a plausible technique to study thin films of n-alkanes. The future importance of this research is related to the possibility of micro-structuring energetically homogenous surfaces with nanometer thick films using relatively simple techniques, such as velocity controlled dip-coating. Micro-structured patterns, such as the stripes reported here, could be applied as optical diffraction grids or as templates for other materials.
Description
Tesis (Master in Physics)--Pontificia Universidad Católica de Chile, 2009
Keywords
Citation