Some advances in a conjecture of Watkins and an analogue over function fields

dc.catalogadorpva
dc.contributor.advisorPastén Vásquez, Héctor
dc.contributor.authorCaro Reyes, Jerson
dc.contributor.otherPontificia Universidad Católica de Chile. Facultad de Matemáticas
dc.date.accessioned2023-03-13T15:30:51Z
dc.date.available2023-03-13T15:30:51Z
dc.date.issued2023
dc.date.updated2023-03-11T18:39:54Z
dc.descriptionTesis (Doctor en Matemática)--Pontificia Universidad Católica de Chile, 2023
dc.description.abstractOur results are divided into two main parts, both related to a conjecture by Watkins. In 2002, Watkins conjectured that the rank of an elliptic curve defined over Q is at most the 2-adic valuation of its modular degree. The first part is related to presenting some approaches to Watkins’s conjecture in its original version. We prove this conjecture for semistable elliptic curves having exactly one rational point of order 2, provided that they have an odd number of primes of non-split multiplicative reduction or no primes of split multiplicative reduction. In addition, we show that this conjecture is satisfied when E is any quadratic twist of an elliptic curve with non-trivial rational 2-torsion and prime power conductor, in particular, for the congruent number elliptic curves. In the second part, we consider the analogous problem over function fields of positive characteristic, and we prove it in several cases. More precisely, every modular semistable elliptic curve over Fq(T) after extending constant scalars and every quadratic twist of a modular elliptic curve over Fq(T) by a polynomial with sufficiently many prime factors satisfy this version of Watkins’s conjecture. Additionally, we prove the analogue of Watkins’s conjecture for a well-known family of elliptic curves with unbounded rank due to Ulmer. In addition, we include a final appendix describing joint work with Hector Pasten [16] on a generalization of the Chabauty-Coleman bound for surfaces. While this is not directly related to the core of the thesis, it is a report on work that was performed during my time as a Ph.D. student.
dc.fechaingreso.objetodigital2023-03-11
dc.format.extent57 páginas
dc.fuente.origenAutoarchivo
dc.identifier.doi10.7764/tesisUC/MAT/66556
dc.identifier.urihttps://doi.org/10.7764/tesisUC/MAT/66556
dc.identifier.urihttps://repositorio.uc.cl/handle/11534/66556
dc.information.autorucFacultad de matemáticas ; Pastén Vásquez, Héctor ; S/I ; 1080628
dc.information.autorucFacultad de matemáticas ; Caro Reyes, Jerson ; S/I ; 1092696
dc.language.isoen
dc.nota.accesoContenido completo
dc.rightsacceso abierto
dc.subject.ddc510
dc.subject.deweyMatemática física y químicaes_ES
dc.titleSome advances in a conjecture of Watkins and an analogue over function fieldses_ES
dc.typetesis doctoral
sipa.codpersvinculados1080628
sipa.codpersvinculados1092696
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Tesis Jerson.pdf
Size:
450.78 KB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
0 B
Format:
Item-specific license agreed upon to submission
Description: