Categorisation of dark photon jets using machine learning techniques

dc.catalogadorgjm
dc.contributor.advisorGaray Walls, Francisca
dc.contributor.advisorOlivares Pino, Sebastián Andrés
dc.contributor.authorHaacke Concha, Michael
dc.contributor.otherPontificia Universidad Católica de Chile. Instituto de Física
dc.date.accessioned2024-01-04T15:13:20Z
dc.date.available2024-01-04T15:13:20Z
dc.date.issued2023
dc.date.updated2024-01-02T00:55:19Z
dc.descriptionTesis (Master in theoretical physics)--Pontificia Universidad Católica de Chile, 2023.
dc.description.abstractThis thesis presents a search for Dark Photons decaying into two Hidden Lightest Stable Particles (HLSP) and fermions or light hadrons using ATLAS experiment data from the LHC at a center-of-mass energy of 13 TeV, with an integrated luminosity of 139.0 fb^-1. This study looks to discriminate the dark photon signal produced by a vector-boson-fusion Higgs from all backgrounds using various machine learning techniques. Among the methods tested, XGBoost emerged as the most effective, achieving a MC simulated significance of 5.88 standard deviations. This marked a substantial 22.5% improvement compared to the standard VBF analysis.
dc.fechaingreso.objetodigital2024-01-04
dc.format.extentxi, 50 páginas
dc.fuente.origenAutoarchivo
dc.identifier.doi10.7764/tesisUC/FIS/75619
dc.identifier.urihttp://doi.org/10.7764/tesisUC/FIS/75619
dc.identifier.urihttps://repositorio.uc.cl/handle/11534/75619
dc.information.autorucInstituto de física; Garay Walls, Francisca; S/I; 165844
dc.information.autorucInstituto de física; Olivares Pino, Sebastián Andrés; 0000-0003-4616-6973; 125165
dc.information.autorucInstituto de física; Haacke Concha, Michael; S/I; 245292
dc.language.isoen
dc.nota.accesoContenido completo
dc.rightsacceso abierto
dc.subject.ddc510
dc.subject.deweyMatemática física y químicaes_ES
dc.titleCategorisation of dark photon jets using machine learning techniques
dc.typetesis de maestría
sipa.codpersvinculados165844
sipa.codpersvinculados125165
sipa.codpersvinculados245292
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Thesis_magister.pdf
Size:
17.37 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.98 KB
Format:
Item-specific license agreed upon to submission
Description: