Predicción semiautomatizada de respuesta a quimioterapia neoadyuvante en pacientes con cáncer de mama: protocolo de segmentación y modelo radiómico-clínico con imágenes de resonancia magnética

Loading...
Thumbnail Image
Date
2023
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Anticipar el resultado de la respuesta tumoral a quimioterapia neoadyuvante podría implicar cambios en la planificación del tratamiento para conducir a mejores resultados clínicos y cambios en la calidad de vida del paciente.En este trabajo se desarrolló un código computacional en lenguaje Python para construir modelos de predicción de la respuesta patológica del tumor (pCR / no-pCR) en base a información clínica y radiómica extraída de imágenes MRI de 59 pacientes con cáncer de mama sometidas a NACT. Específicamente, se utilizaron las secuencias de imágenes T1w y DCE, elaborando un protocolo de segmentación semiautomatizado del tumor y del parénquima de la mama lesionada para el posterior análisis y selección de atributos (features).Se construyeron modelos uni- y multi-variados basados en Machine Learning utilizando distintos algoritmos supervisados de clasificación y, mediante la técnica de validación cruzada k-fold estratificada con repetición con k=3 y n=500 repeticiones, se evaluaron las métricas AUC y Accuracy para analizar el rendimiento de éstos como predictores de pCR del tumor a la terapia neoadyuvante en la cohorte de pacientes con cáncer de mama.
Description
Tesis (Magíster en Física Médica)--Pontificia Universidad Católica de Chile, 2023.
Keywords
Citation