Black holes in scale-dependent frameworks.

Loading...
Thumbnail Image
Date
2019
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
In the present thesis, we investigate the scale–dependence of some well known black hole solutions in 2+1 dimensions at the level of the effective action in the presence of a cosmological constant or an electrical source. We promote the classical parameters of the theory, {G0,(· · ·)0}, to scale–dependent couplings, {Gk,(· · ·)k} and then we solve the corresponding effective Einstein field equations. To close the system of equations we impose the null energy condition. This last condition (valid in arbitrary dimension) provides a differential equation which, after solving it, allows to obtain in a simple way the specific form of the gravitational coupling. Furthermore, perfect-fluid like parameters are induced via the scale-dependent gravitational coupling. Finally, to exemplify the effect of the running of the couplings on the properties of the scale-dependent black hole solutions, we show a few concrete examples.In the present thesis, we investigate the scale–dependence of some well known black hole solutions in 2+1 dimensions at the level of the effective action in the presence of a cosmological constant or an electrical source. We promote the classical parameters of the theory, {G0,(· · ·)0}, to scale–dependent couplings, {Gk,(· · ·)k} and then we solve the corresponding effective Einstein field equations. To close the system of equations we impose the null energy condition. This last condition (valid in arbitrary dimension) provides a differential equation which, after solving it, allows to obtain in a simple way the specific form of the gravitational coupling. Furthermore, perfect-fluid like parameters are induced via the scale-dependent gravitational coupling. Finally, to exemplify the effect of the running of the couplings on the properties of the scale-dependent black hole solutions, we show a few concrete examples.In the present thesis, we investigate the scale–dependence of some well known black hole solutions in 2+1 dimensions at the level of the effective action in the presence of a cosmological constant or an electrical source. We promote the classical parameters of the theory, {G0,(· · ·)0}, to scale–dependent couplings, {Gk,(· · ·)k} and then we solve the corresponding effective Einstein field equations. To close the system of equations we impose the null energy condition. This last condition (valid in arbitrary dimension) provides a differential equation which, after solving it, allows to obtain in a simple way the specific form of the gravitational coupling. Furthermore, perfect-fluid like parameters are induced via the scale-dependent gravitational coupling. Finally, to exemplify the effect of the running of the couplings on the properties of the scale-dependent black hole solutions, we show a few concrete examples.In the present thesis, we investigate the scale–dependence of some well known black hole solutions in 2+1 dimensions at the level of the effective action in the presence of a cosmological constant or an electrical source. We promote the classical parameters of the theory, {G0,(· · ·)0}, to scale–dependent couplings, {Gk,(· · ·)k} and then we solve the corresponding effective Einstein field equations. To close the system of equations we impose the null energy condition. This last condition (valid in arbitrary dimension) provides a differential equation which, after solving it, allows to obtain in a simple way the specific form of the gravitational coupling. Furthermore, perfect-fluid like parameters are induced via the scale-dependent gravitational coupling. Finally, to exemplify the effect of the running of the couplings on the properties of the scale-dependent black hole solutions, we show a few concrete examples.
Description
Tesis (Ph.D. in Physics)--Pontificia Universidad Católica de Chile, 2019
Keywords
Citation