Functional oxide-based electronics for logic, memory, and RF applications

dc.catalogadorpva
dc.contributor.advisorAbusleme Hoffman, Ángel Christian
dc.contributor.advisorDatta, Suman
dc.contributor.authorGómez Mir, Jorge Tomás
dc.contributor.otherPontificia Universidad Católica de Chile. Escuela de Ingeniería
dc.date.accessioned2021-11-02T14:54:07Z
dc.date.available2021-11-02T14:54:07Z
dc.date.issued2021
dc.descriptionTesis (Doctor in Engineering Sciences)--Pontificia Universidad Católica de Chile, 2021
dc.description.abstractMoore’s law, which aims to double the number of transistors in the same area every 18 months, has been in full swing over the last 60 years. Almost every highperformance chip company considered moving to the next available technology node as a primary way to maximize value, however, with Moore’s law slowing down, it is necessary to seek different strategies more closely aligned with the needs of each application. Without the expected device performance boost every 18 months, industries have started to look closely at each step in the production chain providing many opportunities to improve performance aside from of simply reducing the scale of transistors. This work explores and optimizes oxide-based emerging devices for logic, memory, neuromorphic computing and high frequency applications. We performed electrical characterization of several devices and developed high-fidelity, compact circuit-level models. These models bridge the different levels of the supply chain allowing us to exploit the performance of these novel devices for specific applications. For instance, for logic applications we modeled, built, and tested doped-Hafnium Dioxide based ferroelectric field effect transistors (FeFET). We then utilized these experimentally calibrated compact models to explore the phenomenon of Negative Capacitance (NC). This phenomenon can be harnessed to provide a boost in logic transistor performance. We also proposed and experimentally demonstrated the utilization of an amorphous semiconductor oxide channel transistor using a Tungstendoped Indium Oxide transistor. This transistor provides ultra-low leakage and is back-end-of-line (BEOL) compatible. Using these devices, we modeled, built, and tested a BEOL compatible embedded DRAM (eDRAM) with ultra-long refresh time.
dc.format.extentxv, 115 pàginas
dc.fuente.origenAutoarchivo
dc.identifier.doi10.7764/tesisUC/ING/62908
dc.identifier.urihttps://doi.org/10.7764/tesisUC/ING/62908
dc.identifier.urihttps://repositorio.uc.cl/handle/11534/62908
dc.information.autorucEscuela de Ingeniería ; Abusleme Hoffman, Ángel Christian ; 0000-0003-0762-7204 ; 2698
dc.information.autorucEscuela de Ingeniería ; Gómez Mir, Jorge Tomás ; S/I ; 1030571
dc.language.isoen
dc.nota.accesoContenido completo
dc.rightsacceso abierto
dc.subject.ddc621.38132
dc.subject.deweyIngenieríaes_ES
dc.subject.otherCircuitos de transistoreses_ES
dc.subject.otherDiseño de circuitos electrónicoses_ES
dc.subject.otherElectrónicaes_ES
dc.titleFunctional oxide-based electronics for logic, memory, and RF applicationses_ES
dc.typetesis doctoral
sipa.codpersvinculados2698
sipa.codpersvinculados1030571
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Thesis_Jorge_Gomez_PUC_compressed.pdf
Size:
2.84 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.98 KB
Format:
Item-specific license agreed upon to submission
Description: