Browsing by Author "Vio, Carlos P."
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- ItemCongenital diaphragmatic hernia: phosphodiesterase-5 and Arginase inhibitors prevent pulmonary vascular hypoplasia in rat lungs(2022) Toso, Alberto; Aranguiz, Óscar; Cespedes, Carlos; Navarrete, Orieta; Hernández, Cherie; Vio, Carlos P.; Luco Illanes, Matías Fernando; Casanello Toledo, Paola Cecilia; Kattan Said, Alberto JavierBackground Severe pulmonary hypoplasia related to congenital diaphragmatic hernia (CDH) continues to be a potentially fatal condition despite advanced postnatal management strategies. Objective To evaluate the effect of the antenatal sildenafil and 2(S)-amino-6-boronohexanoic acid (ABH-Arginase inhibitor) on lung volume, pulmonary vascular development, and nitric oxide (NO) synthesis in a Nitrofen-induced CDH rat model. Methods Nitrofen-induced CDH rat model was used. Nitrofen was administrated on embryonic day(E) 9,5. At E14, five intervention groups were treated separately: Nitrofen, Nitrofen+Sildenafil, Nitrofen+ABH, Nitrofen+Sildenafil+ABH and Control. At term, offspring's lungs were weighed, some paraffin-embedded for histology, others snap-frozen to analyze eNOS, Arginase I-II expression, and activity. Results In CDH-bearing offsprings, ABH or Sildenafil+ABH preserved the total lung/body-weight index (p < 0.001), preventing pulmonary vascular smooth muscle cell hyperproliferation and improving lung morphometry. Sildenafil+ABH increased 1.7-fold the lung nitrite levels (p < 0.01) without changes in eNOS expression. Sildenafil and ABH improved the number of pulmonary vessels. Conclusion These results suggest that in this CDH rat model, the basal activity of Arginase participates in the lung volume and, together with phosphodiesterase-5, regulates NOS activity in the term fetal lung. The combined treatment (Sildenafil+ABH) could revert some of the pulmonary features in CDH by improving the local NO synthesis and preventing smooth muscle cell hyperproliferation. Impact This study presents Arginase inhibition as a new therapeutic target and the importance of the combined antenatal treatment to improve pulmonary vascular development in a congenital diaphragmatic hernia (CDH) rat model. This study shows that the action of an Arginase inhibitor (ABH) enhances the effects already described for sildenafil in this model. These results reinforce the importance of prenatal treatments' synergy in recovering the hypoplastic lung in the Nitrofen-induced CDH rat model.
- ItemCyclooxygenase-2 and hypoxia-regulated proteins are modulated by basic fibroblast growth factor in acute renal failure(SOC BIOLGIA CHILE, 2012) Villanueva, Sandra; Escobar, Pia; Jacubovsky, Ioram; Irarrazabal, Carlos; Carreno, Juan E.; Erpel, Jose M.; Cespedes, Carlos; Gonzalez, Alexis A.; Vio, Carlos P.; Velarde, VictoriaAcute renal failure (ARF) can be caused by injuries that induce tissue hypoxia, which in turn can trigger adaptive or inflammatory responses. We previously showed the participation of basic fibroblast growth factor (FGF-2) in renal repair. Based on this, the aim of this study was to analyze the effect of FGF-2 signaling pathway manipulation at hypoxia-induced protein levels, as well as in key proteins from the vasoactive systems of the kidney. We injected rat kidneys with FGF-2 recombinant protein (r-FGF) or FGF-2 receptor antisense oligonucleotide (FGFR2-ASO) after bilateral ischemia, and evaluated the presence of iNOS, EPO and HO-1, in representation of hypoxia-induced proteins, as well as COX-2, renin, kallikrein, and B2KR, in representation of the vasoactive systems of the kidney. A reduction in iNOS, HO-1, EPO, renin, kallikrein, B2KR, and in renal damage was observed in animals treated with r-FGF. The opposite effect was found with FGF-2 receptor down-regulation. In contrast, COX-2 protein levels were higher in kidneys treated with r-FGF and lower in those that received FGFR2-ASO, as compared to saline treated kidneys. These results suggest that the protective role of FGF-2 in the pathogenesis of ARF induced by I/R is a complex process, through which a differential regulation of metabolic pathways takes place.
- ItemMegalin/LRP2 Expression Is Induced by Peroxisome Proliferator-Activated Receptor -Alpha and -Gamma: Implications for PPARs' Roles in Renal Function(PUBLIC LIBRARY SCIENCE, 2011) Cabezas, Felipe; Lagos, Jonathan; Cespedes, Carlos; Vio, Carlos P.; Bronfman, Miguel; Marzolo, Maria PazBackground: Megalin is a large endocytic receptor with relevant functions during development and adult life. It is expressed at the apical surface of several epithelial cell types, including proximal tubule cells (PTCs) in the kidney, where it internalizes apolipoproteins, vitamins and hormones with their corresponding carrier proteins and signaling molecules. Despite the important physiological roles of megalin little is known about the regulation of its expression. By analyzing the human megalin promoter, we found three response elements for the peroxisomal proliferator-activated receptor (PPAR). The objective of this study was to test whether megalin expression is regulated by the PPARs.