Browsing by Author "Varela Nallar, Lorena"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- ItemAstroglial gliotransmitters released via Cx43 hemichannels regulate NMDAR-dependent transmission and short-term fear memory in the basolateral amygdala(2022) Linsambarth, Sergio; Carvajal Cachaña, Francisco Javier; Moraga Amaro, Rodrigo; Mendez, Luis; Tamburini, Giovanni; Jimenez, Ivanka; Antonio Verdugo, Daniel; Gomez, Gonzalo, I; Jury, Nur; Martinez, Pablo; van Zundert, Brigitte; Varela Nallar, Lorena; Retamal, Mauricio A.; Martin, Claire; Altenberg, Guillermo A.; Fiori, Mariana C.; Cerpa Nebott, Waldo Francisco; Orellana Roca, Juan Andrés; Stehberg, JimmyAstrocytes release gliotransmitters via connexin 43 (Cx43) hemichannels into neighboring synapses, which can modulate synaptic activity and are necessary for fear memory consolidation. However, the gliotransmitters released, and their mechanisms of action remain elusive. Here, we report that fear conditioning training elevated Cx43 hemichannel activity in astrocytes from the basolateral amygdala (BLA). The selective blockade of Cx43 hemichannels by microinfusion of TAT-Cx43L2 peptide into the BLA induced memory deficits 1 and 24 h after training, without affecting learning. The memory impairments were prevented by the co-injection of glutamate and D-serine, but not by the injection of either alone, suggesting a role for NMDA receptors (NMDAR). The incubation with TAT-Cx43L2 decreased NMDAR-mediated currents in BLA slices, effect that was also prevented by the addition of glutamate and D-serine. NMDARs in primary neuronal cultures were unaffected by TAT-Cx43L2, ruling out direct effects of the peptide on NMDARs. Finally, we show that D-serine permeates through purified Cx43 hemichannels reconstituted in liposomes. We propose that the release of glutamate and D-serine from astrocytes through Cx43 hemichannels is necessary for the activation of post-synaptic NMDARs during training, to allow for the formation of short-term and subsequent long-term memory, but not for learning per se.
- ItemSynaptic Clustering of PSD-95 Is Regulated by c-Abl through Tyrosine Phosphorylation(SOC NEUROSCIENCE, 2010) Perez de Arce, Karen; Varela Nallar, Lorena; Farias, Olivia; Cifuentes, Alejandra; Bull, Paulina; Couch, Brian A.; Koleske, Anthony J.; Inestrosa, Nibaldo C.; Alvarez, Alejandra R.The c-Abl tyrosine kinase is present in mouse brain synapses, but its precise synaptic function is unknown. We found that c-Abl levels in the rat hippocampus increase postnatally, with expression peaking at the first postnatal week. In 14 d in vitro hippocampal neuron cultures, c-Abl localizes primarily to the postsynaptic compartment, in which it colocalizes with the postsynaptic scaffold protein postsynaptic density protein-95 (PSD-95) in apposition to presynaptic markers. c-Abl associates with PSD-95, and chemical or genetic inhibition of c-Abl kinase activity reduces PSD-95 tyrosine phosphorylation, leading to reduced PSD-95 clustering and reduced synapses in treated neurons. c-Abl can phosphorylate PSD-95 on tyrosine 533, and mutation of this residue reduces the ability of PSD-95 to cluster at postsynaptic sites. Our results indicate that c-Abl regulates synapse formation by mediating tyrosine phosphorylation and clustering of PSD-95.
- ItemWingless-type family member 5A (Wnt-5a) stimulates synaptic differentiation and function of glutamatergic synapses(NATL ACAD SCIENCES, 2010) Varela Nallar, Lorena; Alfaro, Ivan E.; Serrano, Felipe G.; Parodi, Jorge; Inestrosa, Nibaldo C.Growing evidence indicates that Wingless-type (Wnt) signaling plays an important role in the maturation of the central nervous system. We report here that Wingless-type family member 5A (Wnt-5a) is expressed early in development and stimulates dendrite spine morphogenesis, inducing de novo formation of spines and increasing the size of the preexisting ones in hippocampal neurons. Wnt-5a increased intracellular calcium concentration in dendritic processes and the amplitude of NMDA spontaneous miniature currents. Acute application of Wnt-5a increased the amplitude of field excitatory postsynaptic potentials (fEPSP) in hippocampal slices, an effect that was prevented by calcium-channel blockers. The physiological relevance of our findings is supported by studies showing that Wnt scavengers decreased spine density, miniature excitatory postsynaptic currents, and fEPSP amplitude. We conclude that Wnt-5a stimulates different aspects of synaptic differentiation and plasticity in the mammalian central nervous system.