Browsing by Author "Vallejos Galvez, Omar Patricio"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- ItemAsymptomatic Herpes Simplex Virus Type 1 Infection Causes an Earlier Onset and More Severe Experimental Autoimmune Encephalomyelitis(2021) Duarte Peñaloza, Luisa Fernanda; Altamirano Lagos, María J.; Tabares Guevara, Jorge H.; Opazo, María Cecilia; Díaz, Máximo; Navarrete, Romina; Muza, Catalina; Vallejos Galvez, Omar Patricio; Riedel Soria, Claudia; Bueno Ramírez, Susan; Kalergis Parra, Alexis Mikes; González Muñoz, Pablo AlbertoMultiple sclerosis (MS) is an increasingly prevalent progressive autoimmune and debilitating chronic disease that involves the detrimental recognition of central nervous system (CNS) antigens by the immune system. Although significant progress has been made in the last decades on the biology of MS and the identification of novel therapies to treat its symptoms, the etiology of this disease remains unknown. However, recent studies have suggested that viral infections may contribute to disease onset. Interestingly, a potential association between herpes simplex virus type 1 (HSV-1) infection and MS has been reported, yet a direct relationship among both has not been conclusively demonstrated. Experimental autoimmune encephalomyelitis (EAE) recapitulates several aspects of MS in humans and is widely used to study this disease. Here, we evaluated the effect of asymptomatic brain infection by HSV-1 on the onset and severity of EAE in C57BL/6 mice. We also evaluated the effect of infection with an HSV-1-mutant that is attenuated in neurovirulence and does not cause encephalitis. Importantly, we observed more severe EAE in mice previously infected either, with the wild-type (WT) or the mutant HSV-1, as compared to uninfected control mice. Also, earlier EAE onset was seen after WT virus inoculation. These findings support the notion that a previous exposure to HSV-1 can accelerate and enhance EAE, which suggests a potential contribution of asymptomatic HSV-1 to the onset and severity of MS.
- ItemCharacterization of the anti-inflammatory capacity of IL-10-Producing neutrophils in response to streptococcus pneumoniae infection(FRONTIERS MEDIA SA, 2021) González Carreño, Liliana Andrea; Melo González, Felipe Andrés; Sebastián Quijada, Valentina Pilar; Vallejos Galvez, Omar Patricio; Noguera Mijares, Loreani Paola; Suazo Galvez, Isidora del Carmen; Schultz Lombardic, Bárbara M.; Manosalva, Andres H.; Peñaloza, Hernán F.; Soto Ramírez, Jorge Andres; Parker, Dane; Riedel, Claudia A.; González Muñoz, Pablo Alberto; Kalergis Parra, Alexis Mikes; Bueno Ramírez, SusanNeutrophils are immune cells classically defined as pro-inflammatory effector cells. However, current accumulated evidence indicates that neutrophils have more versatile immune-modulating properties. During acute lung infection with Streptococcus pneumoniae in mice, interleukin-10 (IL-10) production is required to temper an excessive lung injury and to improve survival, yet the cellular source of IL-10 and the immunomodulatory role of neutrophils during S. pneumoniae infection remain unknown. Here we show that neutrophils are the main myeloid cells that produce IL-10 in the lungs during the first 48 h of infection. Importantly, in vitro assays with bone-marrow derived neutrophils confirmed that IL-10 can be induced by these cells by the direct recognition of pneumococcal antigens. In vivo, we identified the recruitment of two neutrophil subpopulations in the lungs following infection, which exhibited clear morphological differences and a distinctive profile of IL-10 production at 48 h post-infection. Furthermore, adoptive transfer of neutrophils from WT mice into IL-10 knockout mice (Il10(-/-) ) fully restored IL-10 production in the lungs and reduced lung histopathology. These results suggest that IL-10 production by neutrophils induced by S. pneumoniae limits lung injury and is important to mediate an effective immune response required for host survival.
- ItemThe absence of interleukin 10 affects the morphology, differentiation, granule content and the production of cryptidin-4 in Paneth cells in mice.(2019) Berkowitz Fiebich, Loni; Pardo Roa, Catalina; Ramírez Rojas, Gigliola; Vallejos Galvez, Omar Patricio; Sebastián Quijada, Valentina Pilar; Riedel, Claudia A.; Álvarez Lobos, Manuel; Bueno Ramírez, SusanPaneth cells (PCs) are specialized epithelial cells of the small bowel that contain multiple secretory granules filled with antimicrobial peptides and trophic factors, which are essential for the control of the microorganisms growth and maintaining intestinal integrity. Alterations in their function are associated with an imbalance of the normal microbiota, gastrointestinal infections and inflammatory processes, such as Crohn's disease (CD). One of the most common murine models for studying CD is IL-10-/- mouse. IL-10-/- mice when housed in conventional conditions and take contact with commensal microorganisms develop an acute enterocolitis mediated by a Th1 immune response. Even though, alterations in PCs function are related to CD, they had not been characterized yet in this mouse model. Here we show that in specific pathogen free conditions IL-10-/- mice have aberrant granules and a large number of immature PCs at the bottom of the crypt in the ileum of IL-10-/- mice before developing intestinal inflammation, along with a reduced expression of Indian Hedgehog. In addition, IL-10-/- Paneth cells presented a reduced expression of cryptidin-4, and a heterogeneous distribution of lysozyme+ granules. The alterations in the maturation of the PCs at the bottom of the crypt were not modified after the colonization by the conventional microbiota. On the other hand, depletion of microbiota altered the phenotype, but did not normalize PCs. Our results suggest that IL-10 could be necessary for the integrity of PCs. Moreover, our results help to explain why IL-10-/- mice develop enterocolitis in response to microorganisms.