Browsing by Author "Urbina, Jesus"
Now showing 1 - 8 of 8
Results Per Page
Sort Options
- Item3D axial and circumferential wall shear stress from 4D flow MRI data using a finite element method and a laplacian approach(2018) Sotelo Parraguez, Julio Andrés; Dux-Santoy, Lydia; Guala, Andrea; Rodriguez-Palomares, Jose; Evangelista, Arturo; Sing-Long C., Carlos A.; Urbina, Jesus; Mura Mardones, Joaquín Alejandro; Hurtado Sepúlveda, Daniel; Uribe Arancibia, Sergio A.
- Item3D Quantification of Wall Shear Stress and Oscillatory Shear Index Using a Finite-Element Method in 3D CINE PC-MRI Data of the Thoracic Aorta(2016) Sotelo Parraguez, Julio Andrés; Urbina, Jesus; Valverde, Israel; Tejos Nunez, Cristian Andres; Irarrázaval Mena, Pablo; Andia Kohnenkampf, Marcelo Edgardo; Uribe Arancibia, Sergio A.; Hurtado Sepúlveda, DanielSeveral 2D methods have been proposed to estimate WSS and OSI from PC-MRI, neglecting the longitudinal velocity gradients that typically arise in cardiovascular flow, particularly on vessel geometries whose cross section and centerline orientation strongly vary in the axial direction. Thus, the contribution of longitudinal velocity gradients remains understudied. In this work, we propose a 3D finite-element method for the quantification of WSS and OSI from 3D-CINE PC-MRI that accounts for both in-plane and longitudinal velocity gradients. We demonstrate the convergence and robustness of the method on cylindrical geometries using a synthetic phantom based on the Poiseuille flow equation. We also show that, in the presence of noise, the method is both stable and accurate. Using computational fluid dynamics simulations, we show that the proposed 3D method results in more accurate WSS estimates than those obtained from a 2D analysis not considering out-of-plane velocity gradients. Further, we conclude that for irregular geometries the accurate prediction of WSS requires the consideration of longitudinal gradients in the velocity field. Additionally, we compute 3D maps of WSS and OSI for 3D-CINE PC-MRI data sets from an aortic phantom and sixteen healthy volunteers and two patients. The OSI values show a greater dispersion than WSS, which is strongly dependent on the PC-MRI resolution. We envision that the proposed 3D method will improve the estimation of WSS and OSI from 3D-CINE PC-MRI images, allowing for more accurate estimates in vessels with pathologies that induce high longitudinal velocity gradients, such as coarctations and aneurisms.
- ItemA realistic MR compatible aortic phantom to validate hemodynamic parameters from MRI data: aortic coarctation patients comparison using catheterization(2015) Urbina, Jesus; Sotelo Parraguez, Julio Andrés; Tejos Núñez, Cristián Andrés; Irarrázaval Mena, Pablo; Andía Kohnenkampf, Marcelo Edgardo; Razavi, Reza; Valverde, Israel; Uribe Arancibia, Sergio A.
- ItemAccelerating dual cardiac phase images using phase encoding trajectories(ELSEVIER SCIENCE INC, 2016) Letelier, Karis; Urbina, Jesus; Andia, Marcelo; Tejos, Cristian; Irarrazaval, Pablo; Prieto, Claudia; Uribe, SergioA three-dimensional dual-cardiac-phase (3D-DCP) scan has been proposed to acquire two data sets of the whole heart and great vessels during the end-diastolic and end-systolic cardiac phases in a single free-breathing scan. This method has shown accurate assessment of cardiac anatomy and function but is limited by long acquisition times. This work proposes to accelerate the acquisition and reconstruction of 3D-DCP scans by exploiting redundant information of the outer k-space regions of both cardiac phases. This is achieved using a modified radial-phase-encoding trajectory and gridding reconstruction with uniform coil combination. The end-diastolic acquisition trajectory was angularly shifted with respect to the end-systolic phase. Initially, a fully-sampled 3D-DCP scan was acquired to determine the optimal percentage of the outer k-space data that can be combined between cardiac phases. Thereafter, prospectively undersampled data were reconstructed based on this percentage. As gold standard images, the undersampled data were also reconstructed using iterative SENSE. To validate the method, image quality assessments and a cardiac volume analysis were performed. The proposed method was tested in thirteen healthy volunteers (mean age, 30 years). Prospectively undersampled data (R = 4) reconstructed with 50% combination led high quality images. There were no significant differences in the image quality and in the cardiac volume analysis between our method and iterative SENSE. In addition, the proposed approach reduced the reconstruction time from 40 min to 1 min. In conclusion, the proposed method obtains 3D-DCP scans with an image quality comparable to those reconstructed with iterative SENSE, and within a clinically acceptable reconstruction time. (C) 2016 Elsevier Inc. All rights reserved.
- ItemAortic Stenosis: Haemodynamic Benchmark and Metric Reliability Study(2023) Gill, Harminder; Fernandes, Joao Filipe; Nio, Amanda; Dockerill, Cameron; Shah, Nili; Ahmed, Naajia; Raymond, Jason; Wang, Shu; Sotelo, Julio; Urbina, Jesus; Uribe, Sergio; Rajani, Ronak; Rhode, Kawal; Lamata, PabloAortic stenosis is a condition which is fatal if left untreated. Novel quantitative imaging techniques which better characterise transvalvular pressure drops are being developed but require refinement and validation. A customisable and cost-effective workbench valve phantom circuit capable of replicating valve mechanics and pathology was created. The reproducibility and relationship of differing haemodynamic metrics were assessed from ground truth pressure data alongside imaging compatibility. The phantom met the requirements to capture ground truth pressure data alongside ultrasound and magnetic resonance image compatibility. The reproducibility was successfully tested. The robustness of three different pressure drop metrics was assessed: whilst the peak and net pressure drops provide a robust assessment of the stenotic burden in our phantom, the peak-to-peak pressure drop is a metric that is confounded by non-valvular factors such as wave reflection. The peak-to-peak pressure drop is a metric that should be reconsidered in clinical practice.
- ItemLiver PDFF estimation using a multi-decoder water-fat separation neural network with a reduced number of echoes(2023) Meneses, Juan Pablo; Arrieta, Cristobal; della Maggiora, Gabriel; Besa, Cecilia; Urbina, Jesus; Arrese, Marco; Gana, Juan Cristobal; Galgani, Jose E.; Tejos, Cristian; Uribe, SergioObjectiveTo accurately estimate liver PDFF from chemical shift-encoded (CSE) MRI using a deep learning (DL)-based Multi-Decoder Water-Fat separation Network (MDWF-Net), that operates over complex-valued CSE-MR images with only 3 echoes.MethodsThe proposed MDWF-Net and a U-Net model were independently trained using the first 3 echoes of MRI data from 134 subjects, acquired with conventional 6-echoes abdomen protocol at 1.5 T. Resulting models were then evaluated using unseen CSE-MR images obtained from 14 subjects that were acquired with a 3-echoes CSE-MR pulse sequence with a shorter duration compared to the standard protocol. Resulting PDFF maps were qualitatively assessed by two radiologists, and quantitatively assessed at two corresponding liver ROIs, using Bland Altman and regression analysis for mean values, and ANOVA testing for standard deviation (STD) (significance level: .05). A 6-echo graph cut was considered ground truth.ResultsAssessment of radiologists demonstrated that, unlike U-Net, MDWF-Net had a similar quality to the ground truth, despite it considered half of the information. Regarding PDFF mean values at ROIs, MDWF-Net showed a better agreement with ground truth (regression slope = 0.94, R-2 = 0.97) than U-Net (regression slope = 0.86, R-2 = 0.93). Moreover, ANOVA post hoc analysis of STDs showed a statistical difference between graph cuts and U-Net (p < .05), unlike MDWF-Net (p = .53).ConclusionMDWF-Net showed a liver PDFF accuracy comparable to the reference graph cut method, using only 3 echoes and thus allowing a reduction in the acquisition times.
- ItemValidation of 4D Flow based relative pressure maps in aortic flows(2021) Nolte, David; Urbina, Jesus; Sotelo, Julio; Sok, Leo; Montalba, Cristian; Valverde, Israel; Osses, Axel; Uribe, Sergio; Bertoglio, CristobalWhile the clinical gold standard for pressure difference measurements is invasive catheterization, 4D Flow MRI is a promising tool for enabling a non-invasive quantification, by linking highly spatially resolved velocity measurements with pressure differences via the incompressible Navier-Stokes equations. In this work we provide a validation and comparison with phantom and clinical patient data of pressure difference maps estimators. We compare the classical Pressure Poisson Estimator (PPE) and the new Stokes Estimator (STE) against catheter pressure measurements under a variety of stenosis severities and flow intensities. Specifically, we use several 4D Flow data sets of realistic aortic phantoms with different anatomic and hemodynamic severities and two patients with aortic coarctation. The phantom data sets are enriched by subsampling to lower resolutions, modification of the segmentation and addition of synthetic noise, in order to study the sensitivity of the pressure difference estimators to these factors. Overall, the STE method yields more accurate results than the PPE method compared to catheterization data. The superiority of the STE becomes more evident at increasing Reynolds numbers with a better capacity of capturing pressure gradients in strongly convective flow regimes. The results indicate an improved robustness of the STE method with respect to variation in lumen segmentation. However, with heuristic removal of the wall-voxels, the PPE can reach a comparable accuracy for lower Reynolds' numbers. (c) 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ )
- ItemVariability of 4D flow parameters when subjected to changes in MRI acquisition parameters using a realistic thoracic aortic phantom(2018) Montalba, Cristian; Urbina, Jesus; Sotelo Parraguez, Julio Andrés; Andía Kohnenkampf, Marcelo Edgardo; Tejos Núñez, Cristián Andrés; Irarrázaval Mena, Pablo; Hurtado Sepúlveda, Daniel; Valverde, Israel; Uribe Arancibia, Sergio A.