• La Universidad
    • Historia
    • Rectoría
    • Autoridades
    • Secretaría General
    • Pastoral UC
    • Organización
    • Hechos y cifras
    • Noticias UC
  • 2011-03-15-13-28-09
  • Facultades
    • Agronomía e Ingeniería Forestal
    • Arquitectura, Diseño y Estudios Urbanos
    • Artes
    • Ciencias Biológicas
    • Ciencias Económicas y Administrativas
    • Ciencias Sociales
    • College
    • Comunicaciones
    • Derecho
    • Educación
    • Filosofía
    • Física
    • Historia, Geografía y Ciencia Política
    • Ingeniería
    • Letras
    • Matemáticas
    • Medicina
    • Química
    • Teología
    • Sede regional Villarrica
  • 2011-03-15-13-28-09
  • Organizaciones vinculadas
  • 2011-03-15-13-28-09
  • Bibliotecas
  • 2011-03-15-13-28-09
  • Mi Portal UC
  • 2011-03-15-13-28-09
  • Correo UC
- Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log in
    Log in
    Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of DSpace
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log in
    Log in
    Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Tozzi, P."

Now showing 1 - 10 of 10
Results Per Page
Sort Options
  • No Thumbnail Available
    Item
    CLASH-VLT: spectroscopic confirmation of z=6.11 quintuply lensed galaxy in the Frontier Fields cluster RXC J2248.7-4431
    (2013) Balestra, I.; Vanzella, E.; Rosati, P.; Monna, A.; Grillo, C.; Nonino, M.; Mercurio, A.; Biviano, A.; Bradley, L.; Coe, D.; Fritz, A.; Postman, M.; Seitz, S.; Scodeggio, M.; Tozzi, P.; Zhengll, W.; Ziegler, B.; Zitrin, A.; Annunziatella, M.; Bartelmann, M.; Benitez, N.; Broadhurst, T.; Bouwens, R.; Czoske, O.; Donahue, M.; Ford, H.; Girardi, M.; Infante, L.; Jouvel, S.; Kelson, D.; Koekemoer, A.; Kuchner, U.; Lemze, D.; Lombardi, M.; Maier, C.; Medezinski, E.; Melchior, P.; Meneghetti, M.; Merten, J.; Molino, A.; Moustakas, L.; Presotto, V.; Smit, R.; Umetsu, K.
    We present VIsible Multi-Object Spectrograph (VIMOS) observations of a z similar to 6 galaxy quintuply imaged by the Frontier Fields galaxy cluster RXC J2248.7-4431 (z = 0.348). This sub-L*, high-z galaxy has been recently discovered by Monna et al. (2013) using dropout techniques with the 16-band HST photometry acquired as part of the Cluster Lensing And Supernova survey with Hubble (CLASH). Obtained as part of the CLASH-VLT survey, the VIMOS medium-resolution spectra of this source show a very faint continuum between similar to 8700 angstrom and similar to 9300 angstrom and a prominent emission line at 8643 angstrom, which can be readily identified with Lyman-alpha at z = 6.110 +/- 0.002. The emission line exhibits an asymmetric profile, with a more pronounced red wing. The rest-frame equivalent width of the line is EW = 79 +/- 10 angstrom, relatively well constrained thanks to the detection of the UV continuum, which is rarely achieved for a sub-L* galaxy at this redshift. After correcting for magnification, the star formation rate (SFR) estimated from the Ly alpha line is SFR(Ly alpha) = 11 M-circle dot yr(-l) and that estimated from the UV data is SFR(UV) = 3 M-circle dot yr(-1). We estimate that the effective radius of the source is R-e less than or similar to 0.4 kpc, which implies a star formation surface mass density Sigma(SFR) > 6 M(circle dot)yr(-1) kpc(-2) and, using the Kennicutt-Schmidt relation, a gas surface mass density Sigma(gas) > 10(3) M(circle dot)pc(-2). Our results support the idea that this magnified, distant galaxy is a young and compact object with luminosity 0.4 L* at z = 6, when the Universe was just 1 Gyr old, with a similar amount of mass in gas and stars. In the spirit of the Frontier Fields initiative, we also publish the redshifts of several multiply imaged sources and other background objects, which will help improving the strong-lensing model of this galaxy cluster.
  • No Thumbnail Available
    Item
    Discovery of a galaxy overdensity around a powerful, heavily obscured FRII radio galaxy at z=1.7: star formation promoted by large-scale AGN feedback?
    (2019) Gilli, R.; Mignoli, M.; Peca, A.; Nanni, R.; Prandoni, I.; Liuzzo, E.; D'Amato, Q.; Brusa, M.; Calura, F.; Caminha, G. B.; Chiaberge, M.; Comastri, A.; Cucciati, O.; Cusano, F.; Grandi, P.; Decarli, R.; Lanzuisi, G.; Mannucci, F.; Pinna, E.; Tozzi, P.; Vanzella, E.; Vignali, C.; Vito, F.; Balmaverde, B.; Citro, A.; Cappelluti, N.; Zamorani, G.; Norman, C.
    We report the discovery of a galaxy overdensity around a Compton-thick Fanaroff-Riley type II (FRII) radio galaxy at z = 1:7 in the deep multiband survey around the z = 6.3 quasi-stellar object (QSO) SDSS J1030 +0524. Based on a 6 h VLT/MUSE and on a 4 h LBT/LUCI observation, we identify at least eight galaxy members in this structure with spectroscopic redshift z = 1 .687 1 .699, including the FRII galaxy at z = 1.699. Most members are distributed within 400 kpc from the FRII core. Nonetheless, the whole structure is likely much more extended, as one of the members was serendipitously found at similar to 800 kpc projected separation. The classic radio structure of the FRII itself extends for similar to 600 kpc across the sky. Most of the identified overdensity members are blue, compact galaxies that are actively forming stars at rates of similar to 8-60 M-circle dot yr(-1). For the brightest of them, a half-light radius of 2 .2 similar to 0 .8 kpc at 8000A rest-frame was determined based on adaptive optics-assisted observations with LBT/SOUL in the Ks band. We do not observe any strong galaxy morphological segregation or concentration around the FRII core. This suggests that the structure is far from being virialized and likely constitutes the progenitor of a local massive galaxy group or cluster caught in its main assembly phase. Based on a 500 ks Chandra ACIS-I observation, we found that the FRII nucleus hosts a luminous QSO (L2-10 keV = 1 .3 similar to 10(44) erg s(-1), intrinsic and rest-frame) that is obscured by Compton-thick absorption (N-H = 1.5 +/- 0 .6 x 10(24) cm(-2)). Under standard bolometric corrections, the total measured radiative power (L-rad similar to 4 x 10(45) erg s(-1)) is similar to the jet kinetic power that we estimated from radio observations at 150MHz (P-kin = 6.3 x 10(45) erg s(-1)), in agreement with what is observed in powerful jetted AGN. Our Chandra observation is the deepest so far for a distant FRII within a galaxy overdensity. It revealed significant di ffuse X-ray emission within the region that is covered by the overdensity. In particular, X-ray emission extending for similar to 240 kpc is found around the eastern lobe of the FRII. Four out of the six MUSE star-forming galaxies in the overdensity are distributed in an arc-like shape at the edge of this di ffuse X-ray emission. These objects are concentrated within 200 kpc in the plane of the sky and within 450 kpc in radial separation. Three of them are even more concentrated and fall within 60 kpc in both transverse and radial distance. The probability of observing four out of the six z = 1.7 sources by chance at the edge of the di ffuse emission is negligible. In addition, these four galaxies have the highest specific star formation rates of the MUSE galaxies in the overdensity and lie above the main sequence of field galaxies of equal stellar mass at z = 1.7. We propose that the di ffuse X-rays originate from an expanding bubble of gas that is shock heated by the FRII jet, and that star formation is promoted by the compression of the cold interstellar medium of the galaxies around the bubble, which may be remarkable evidence of positive AGN feedback on cosmological scales.
  • No Thumbnail Available
    Item
    Dust and gas content of high-redshift galaxies hosting obscured AGN in the Chandra Deep Field-South
    (2020) D'Amato, Q.; Gilli, R.; Vignali, C.; Massardi, M.; Pozzi, F.; Zamorani, G.; Circosta, C.; Vito, F.; Fritz, J.; Cresci, G.; Casasola, V.; Calura, F.; Feltre, A.; Manieri, V.; Rigopoulou, D.; Tozzi, P.; Norman, C.
    Context. Obscured active galactic nuclei (AGN) represent a significant fraction of the entire AGN population, especially at high redshift (similar to 70% at z=3-5). They are often characterized by the presence of large gas and dust reservoirs that are thought to sustain and possibly obscure vigorous star formation processes that make these objects shine at FIR and submillimeter wavelengths. Studying the physical properties of obscured AGN and their host galaxies is crucial to shedding light on the early stages of a massive system lifetime.Aims. We aim to investigate the contribution of the interstellar medium (ISM) to the obscuration of quasars in a sample of distant highly star forming galaxies and to unveil their morphological and kinematics properties.Methods. We exploit Atacama Large Millimeter/submillimeter Array Cycle 4 observations of the continuum (similar to 2.1 mm) and high-J CO emission of a sample of six X-ray selected, FIR detected galaxies hosting an obscured AGN at z(spec)> 2.5 in the 7 Ms Chandra Deep Field-South. We measured the masses and sizes of the dust and molecular gas by fitting the images, visibilities, and spectra, and we derived the gas density and column density on the basis of a uniform sphere geometry. Finally, we compared the measured column densities with those derived from the Chandra X-ray spectra.Results. We detected both the continuum and line emission for three sources for which we measured both the flux density and size. For the undetected sources, we derived an upper limit on the flux density from the root mean square of the images. We found that the detected galaxies are rich in gas and dust (molecular gas mass in the range < 0.5-2.7x10(10) M- for alpha (CO)=0.8 and up to similar to 2x10(11) M-circle dot for alpha (CO)=6.5, and dust mass < 0.9-4.9x10(8) M-) and generally compact (gas major axis 2.1-3.0 kpc, dust major axis 1.4-2.7 kpc). The column densities associated with the ISM are on the order of 10(23-24) cm(-2), which is comparable with those derived from the X-ray spectra. For the detected sources we also derived dynamical masses in the range 0.8-3.7x10(10) M-circle dot.Conclusions. We conclude that the ISM of high redshift galaxies can substantially contribute to nuclear obscuration up to the Compton-thick (> 10(24) cm(-2)) regime. In addition, we found that all the detected sources show a velocity gradient reminding one rotating system, even though two of them show peculiar features in their morphology that can be associated with a chaotic, possibly merging, structure.
  • No Thumbnail Available
    Item
    Galaxy-scale ionised winds driven by ultra-fast outflows in two nearby quasars
    (2020) Marasco, A.; Cresci, G.; Nardini, E.; Mannucci, F.; Marconi, A.; Tozzi, P.; Tozzi, G.; Amiri, A.; Venturi, G.; Piconcelli, E.; Lanzuisi, G.; Tombesi, F.; Mingozzi, M.; Perna, M.; Carniani, S.; Brusa, M.; Alighieri, S. di Serego
    We used MUSE adaptive optics data in narrow field mode to study the properties of the ionised gas in MR 2251-178 and PG 1126-041, two nearby (z similar or equal to 0.06) bright quasars (QSOs) hosting sub-pc scale ultra-fast outflows (UFOs) detected in the X-ray band. We decomposed the optical emission from diffuse gas into a low- and a high-velocity components. The former is characterised by a clean, regular velocity field and a low (similar to 80 km s(-1)) velocity dispersion. It traces regularly rotating gas in PG 1126-041, while in MR 2251-178 it is possibly associated with tidal debris from a recent merger or flyby. The other component is found to be extended up to a few kpc from the nuclei, and shows a high (similar to 800 km s(-1)) velocity dispersion and a blue-shifted mean velocity, as is expected from outflows driven by active galactic nuclei (AGN). We estimate mass outflow rates up to a few M-circle dot yr(-1) and kinetic efficiencies L-KIN/L-BOL between 1-4x10(-4), in line with those of galaxies hosting AGN of similar luminosities. The momentum rates of these ionised outflows are comparable to those measured for the UFOs at sub-pc scales, which is consistent with a momentum-driven wind propagation. Pure energy-driven winds are excluded unless about 100x additional momentum is locked in massive molecular winds. In comparing the outflow properties of our sources with those of a small sample of well-studied QSOs hosting UFOs from the literature, we find that winds seem to systematically lie either in a momentum-driven or an energy-driven regime, indicating that these two theoretical models bracket the physics of AGN-driven winds very well.
  • No Thumbnail Available
    Item
    THE 4 Ms CHANDRA DEEP FIELD-SOUTH NUMBER COUNTS APPORTIONED BY SOURCE CLASS: PERVASIVE ACTIVE GALACTIC NUCLEI AND THE ASCENT OF NORMAL GALAXIES
    (2012) Lehmer, B. D.; Xue, Y. Q.; Brandt, W. N.; Alexander, D. M.; Bauer, F. E.; Brusa, M.; Comastri, A.; Gilli, R.; Hornschemeier, A. E.; Luo, B.; Paolillo, M.; Ptak, A.; Shemmer, O.; Schneider, D. P.; Tozzi, P.; Vignali, C.
    We present 0.5-2 keV, 2-8 keV, 4-8 keV, and 0.5-8 keV (hereafter soft, hard, ultra-hard, and full bands, respectively) cumulative and differential number-count (log N-log S) measurements for the recently completed approximate to 4 Ms Chandra Deep Field-South (CDF-S) survey, the deepest X-ray survey to date. We implement a new Bayesian approach, which allows reliable calculation of number counts down to flux limits that are factors of approximate to 1.9-4.3 times fainter than the previously deepest number-count investigations. In the soft band (SB), the most sensitive bandpass in our analysis, the approximate to 4 Ms CDF-S reaches a maximum source density of approximate to 27,800 deg(-2). By virtue of the exquisite X-ray and multiwavelength data available in the CDF-S, we are able to measure the number counts from a variety of source populations (active galactic nuclei (AGNs), normal galaxies, and Galactic stars) and subpopulations (as a function of redshift, AGN absorption, luminosity, and galaxy morphology) and test models that describe their evolution. We find that AGNs still dominate the X-ray number counts down to the faintest flux levels for all bands and reach a limiting SB source density of approximate to 14,900 deg(-2), the highest reliable AGN source density measured at any wavelength. We find that the normal-galaxy counts rise rapidly near the flux limits and, at the limiting SB flux, reach source densities of approximate to 12,700 deg(-2) and make up 46% +/- 5% of the total number counts. The rapid rise of the galaxy counts toward faint fluxes, as well as significant normal-galaxy contributions to the overall number counts, indicates that normal galaxies will overtake AGNs just below the approximate to 4 Ms SB flux limit and will provide a numerically significant new X-ray source population in future surveys that reach below the approximate to 4 Ms sensitivity limit. We show that a future approximate to 10 Ms CDF-S would allow for a significant increase in X-ray-detected sources, with many of the new sources being cosmologically distant (z greater than or similar to 0.6) normal galaxies.
  • No Thumbnail Available
    Item
    The deep Chandra survey in the SDSS J1030+0524 field
    (2020) Nanni, R.; Gilli, R.; Vignali, C.; Mignoli, M.; Peca, A.; Marchesi, S.; Annunziatella, M.; Brusa, M.; Calura, F.; Cappelluti, N.; Chiaberge, M.; Comastri, A.; Iwasawa, K.; Lanzuisi, G.; Liuzzo, E.; Marchesini, D.; Prandoni, I.; Tozzi, P.; Vito, F.; Zamorani, G.; Norman, C.
    We present the X-ray source catalog for the similar to 479 ks Chandra exposure of the SDSS J1030+0524 field, which is centered on a region that shows the best evidence to date of an overdensity around a z > 6 quasar, and also includes a galaxy overdensity around a Compton-thick Fanaroff-Riley type II (FRII) radio galaxy at z = 1.7. Using wavdetect for initial source detection and ACIS Extract for source photometry and significance assessment, we create preliminary catalogs of sources that are detected in the full (0.5-7.0 keV), soft (0.5-2.0 keV), and hard (2-7 keV) bands, respectively. We produce X-ray simulations that mirror our Chandra observation to filter our preliminary catalogs and achieve a completeness level of > 91% and a reliability level of similar to 95% in each band. The catalogs in the three bands are then matched into a final main catalog of 256 unique sources. Among them, 244, 193, and 208 are detected in the full, soft, and hard bands, respectively. The Chandra observation covers a total area of 335 arcmin(2) and reaches flux limits over the central few square arcmins of similar to 3 x 10(-16), 6 x 10(-17), and 2 x 10(-16) erg cm(-2) s(-1) in the full, soft, and hard bands, respectively This makes J1030 field the fifth deepest extragalactic X-ray survey to date. The field is part of the Multiwavelength Survey by Yale-Chile (MUSYC), and is also covered by optical imaging data from the Large Binocular Camera (LBC) at the Large Binocular Telescope (LBT), near-infrared imaging data from the Canada France Hawaii Telescope WIRCam (CFHT/WIRCam), and Spitzer IRAC. Thanks to its dense multi-wavelength coverage, J1030 represents a legacy field for the study of large-scale structures around distant accreting supermassive black holes. Using a likelihood ratio analysis, we associate multi-band (r, z, J, and 4.5 mu m) counterparts for 252 (98.4%) of the 256 Chandra sources, with an estimated reliability of 95%. Finally, we compute the cumulative number of sources in each X-ray band, finding that they are in general agreement with the results from the Chandra Deep Fields.
  • No Thumbnail Available
    Item
    The universal shape of the X-ray variability power spectrum of AGN up to z ∼ 3
    (2023) Paolillo, M.; Papadakis, I. E.; Brandt, W. N.; Bauer, F. E.; Lanzuisi, G.; Allevato, V.; Shemmer, O.; Zheng, X. C.; De Cicco, D.; Gilli, R.; Luo, B.; Thomas, M.; Tozzi, P.; Vito, F.; Xue, Y. Q.
    Aims. We study the ensemble X-ray variability properties of active galactic nuclei (AGN) over large ranges of timescale (20 ks <= T <= 14 yr), redshift (0 <= z less than or similar to 3), luminosity (10(40) erg s(-1) <= L-X <= 10(46) erg s(-1)), and black hole (BH) mass (10(6) <= M-circle dot <= 10(9)).
  • Loading...
    Thumbnail Image
    Item
    The XMM-SERVS survey: new XMM-Newton point-source catalogue for the XMM-LSS field
    (2018) Chen, C-T J.; Brandt, W. N.; Luo, B.; Ranalli, P.; Yang, G.; Alexander, D. M.; Bauer, Franz Erik; Kelson, D. D.; Lacy, M.; Nyland, K.; Tozzi, P.; Vito, F.; Cirasuolo, M.; Gilli, R.; Jarvis, M. J.; Lehmer, B. D.; Paolillo, M.; Schneider, D. P.|
  • Loading...
    Thumbnail Image
    Item
    Tracing the accretion history of supermassive black holes through X-ray variability: results from the Chandra Deep Field-South
    (2017) Paolillo, M.; Papadakis, I.; Brandt, W. N.; Luo, B.; Xue, Y. Q.; Tozzi, P.; Shemmer, O.; Allevato, V.; Bauer, Franz Erik; Comastri, A.
  • No Thumbnail Available
    Item
    X-Ray Unveiling Events in a z ≈ 1.6 Active Galactic Nucleus in the 7 Ms Chandra Deep Field-South
    (2023) Yu, Li-Ming; Luo, Bin; Brandt, W. N.; Bauer, Franz E.; De Cicco, D.; Fabian, A.; Gilli, R.; Koekemoer, A.; Paolillo, M.; Schneider, D. P.; Shemmer, O.; Tozzi, P.; Trump, Jonathan R.; Vignali, C.; Vito, F.; Wang, J. -x.; Xue, Y. Q.
    We investigate the extreme X-ray variability of a z = 1.608 active galactic nucleus in the 7 Ms Chandra Deep Field-South (XID 403), which showed two significant X-ray brightening events. In the first event, XID 403 brightened by a factor of >2.5 in less than or similar to 6.1 rest-frame days in the observed-frame 0.5-5 keV band. The event lasted for approximate to 5.0-7.3 days, and then XID 403 dimmed by a factor of >6.0 in less than or similar to 6.1 days. After approximate to 1.1-2.5 yr in the rest frame (including long observational gaps), it brightened again, with the 0.5-5 keV flux increasing by a factor of >12.6. The second event lasted over 251 days, and the source remained bright until the end of the 7 Ms exposure. The spectrum is a steep power law (photon index Gamma = 2.8 +/- 0.3) without obscuration during the second outburst, and the rest-frame 2-10 keV luminosity reaches 1.5(-0.5)(+0.8) x 10(43) erg s(-1); there is no significant spectral evolution within this epoch. The infrared-to-UV spectral energy distribution of XID 403 is dominated by the host galaxy. There is no significant optical/UV variability and R-band (rest-frame approximate to 2500 angstrom) brightening contemporaneous with the X-ray brightening. The extreme X-ray variability is likely due to two X-ray unveiling events, where the line of sight to the corona is no longer shielded by high-density gas clumps in a small-scale dust-free absorber. XID 403 is probably a high-redshift analog of local narrow-line Seyfert 1 galaxies, and the X-ray absorber is a powerful accretion disk wind. On the other hand, we cannot exclude the possibility that XID 403 is an unusual candidate for tidal disruption events.

Bibliotecas - Pontificia Universidad Católica de Chile- Dirección oficinas centrales: Av. Vicuña Mackenna 4860. Santiago de Chile.

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback