Browsing by Author "Tapia, Tomás Felipe"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemNew Heuristics for Scheduling and Distributing Jobs under Hybrid Dew Computing Environments(2021) Sanabria, Pablo; Tapia, Tomás Felipe; Neyem, Andres; Benedetto, Jose Ignacio; Hirsch, Matías; Mateos, Cristian; Zunino, AlejandroMobile grid computing has been a popular topic for researchers due to mobile and IoT devices’ ubiquity and their evergrowing processing potential. While many scheduling algorithms for harnessing these resources exist in the literature for standard grid computing scenarios, surprisingly, there is little insight into this matter in the context of hybrid-powered computing resources, typically found in Dew and Edge computing environments. This paper proposes new algorithms aware of devices’ power source for scheduling tasks in hybrid environments, i.e., where the battery- and non-battery-powered devices cooperate. We simulated hybrid Dew/Edge environments by extending DewSim, a simulator that models battery-driven devices’ battery behavior using battery traces profiled from real mobile devices. We compared the throughput and job completion achieved by algorithms proposed in this paper using as a baseline a previously developed algorithm that considers computing resources but only from battery-dependent devices called Enhanced Simple Energy-Aware Schedule (E-SEAS). The obtained results in the simulation reveal that our proposed algorithms can obtain up to a 90% increment in overall throughput and around 95% of completed jobs in hybrid environments compared to E-SEAS. Finally, we show that incorporating these characteristics gives more awareness of the type of resources present and can enable the algorithms to manage resources more efficiently in more hybrid environments than other algorithms found in the literature.
- ItemSolving Task Scheduling Problems in Dew Computing via Deep Reinforcement Learning(2022) Sanabria Quispe, Pablo; Tapia, Tomás Felipe; Toro Icarte, Rodrigo; Neyem, AndresDue to mobile and IoT devices’ ubiquity and their ever-growing processing potential, Dew computing environments have been emerging topics for researchers. These environments allow resource-constrained devices to contribute computing power to others in a local network. One major challenge in these environments is task scheduling: that is, how to distribute jobs across devices available in the network. In this paper, we propose to distribute jobs in Dew environments using artificial intelligence (AI). Specifically, we show that an AI agent, known as Proximal Policy Optimization (PPO), can learn to distribute jobs in a simulated Dew environment better than existing methods—even when tested over job sequences that are five times longer than the sequences used during the training. We found that using our technique, we can gain up to 77% in performance compared with using human-designed heuristics.