Browsing by Author "Soto, Jorge A."
Now showing 1 - 16 of 16
Results Per Page
Sort Options
- ItemA Booster Dose of CoronaVac Increases Neutralizing Antibodies and T Cells that Recognize Delta and Omicron Variants of Concern(2022) Schultz, Barbara M.; Melo-Gonzalez, Felipe; Duarte, Luisa F.; Galvez, Nicolas M. S.; Pacheco, Gaspar A.; Soto, Jorge A.; Berrios-Rojas, Roslye, V; Gonzalez, Liliana A.; Moreno-Tapia, Daniela; Rivera-Perez, Daniela; Rios, Mariana; Vazquez, Yaneisi; Hoppe-Elsholz, Guillermo; Andrade-Parra, Catalina A.; Vallejos, Omar P.; Pina-Iturbe, Alejandro; Iturriaga, Carolina; Urzua, Marcela; Navarrete, Maria S.; Rojas, Alvaro; Fasce, Rodrigo; Fernandez, Jorge; Mora, Judith; Ramirez, Eugenio; Gaete-Argel, Aracelly; Acevedo, Monica; Valiente-Echeverria, Fernando; Soto-Rifo, Ricardo; Weiskopf, Daniela; Grifoni, Alba; Sette, Alessandro; Zeng, Gang; Meng, Weining; Gonzalez-Aramundiz, Jose, V; Gonzalez, Pablo A.; Abarca, Katia; Kalergis, Alexis M.; Bueno, Susan M.CoronaVac is an inactivated SARS-CoV-2 vaccine approved by the World Health Organization (WHO). Previous studies reported increased levels of neutralizing antibodies and specific T cells 2 and 4 weeks after two doses of CoronaVac; these levels were significantly reduced at 6 to 8 months after the two doses. Here, we report the effect of a booster dose of CoronaVac on the anti-SARS-CoV-2 immune response generated against the variants of concern (VOCs), Delta and Omicron, in adults participating in a phase III clinical trial in Chile. Volunteers immunized with two doses of CoronaVac in a 4-week interval received a booster dose of the same vaccine between 24 and 30 weeks after the second dose. Neutralization capacities and T cell activation against VOCs Delta and Omicron were assessed 4 weeks after the booster dose. We observed a significant increase in neutralizing antibodies 4 weeks after the booster dose. We also observed a rise in anti-SARS-CoV-2-specific CD4(+) T cells over time, and these cells reached a peak 4 weeks after the booster dose. Furthermore, neutralizing antibodies and SARS-CoV-2-specific T cells induced by the booster showed activity against VOCs Delta and Omicron. Our results show that a booster dose of CoronaVac increases adults' humoral and cellular anti-SARS-CoV-2 immune responses. In addition, immunity induced by a booster dose of CoronaVac is active against VOCs, suggesting adequate protection. IMPORTANCE CoronaVac is an inactivated vaccine against SARS-CoV-2 that has been approved by WHO for emergency use. Phase III clinical trials are in progress in several countries, including China, Brazil, Turkey, and Chile, and have shown safety and immunogenicity after two doses of the vaccine. This report characterizes immune responses induced by two doses of CoronaVac followed by a booster dose 5 months after the second dose in healthy Chilean adults. The data reported here show that a booster dose increased the immune responses against SARS-CoV-2, enhancing levels of neutralizing antibodies against the ancestral strain and VOCs. Similarly, anti-SARS-CoV-2 CD4(+) T cell responses were increased following the booster dose. In contrast, levels of gamma interferon secretion and T cell activation against the VOCs Delta and Omicron were not significantly different from those for the ancestral strain. Therefore, a third dose of CoronaVac in a homologous vaccination schedule improves its immunogenicity in healthy volunteers.
- ItemA molecular perspective for the development of antibodies against the human respiratory syncytial virus(2024) Loaiza, Ricardo A.; Ramirez, Robinson A.; Sepulveda-Alfaro, Javiera; Ramirez, Mario A.; Andrade, Catalina A.; Soto, Jorge A.; Gonzalez, Pablo A.; Bueno, Susan M.; Kalergis, Alexis M.The human respiratory syncytial virus (hRSV) is the leading etiologic agent causing respiratory infections in infants, children, older adults, and patients with comorbidities. Sixty-seven years have passed since the discovery of hRSV, and only a few successful mitigation or treatment tools have been developed against this virus. One of these is immunotherapy with monoclonal antibodies against structural proteins of the virus, such as Palivizumab, the first prophylactic approach approved by the Food and Drug Administration (FDA) of the USA. In this article, we discuss different strategies for the prevention and treatment of hRSV infection, focusing on the molecular mechanisms against each target that underly the rational design of antibodies against hRSV. At the same time, we describe the latest results regarding currently approved therapies against hRSV and the challenges associated with developing new candidates.
- ItemBCG-Based Vaccines Elicit Antigen-Specific Adaptive and Trained Immunity against SARS-CoV-2 and Andes orthohantavirus(2022) Soto, Jorge A.; Díaz, Fabián E.; Retamal-Díaz, Angello; Gálvez, Nicolás M. S.; Melo-González, Felipe; Piña-Iturbe, Alejandro; Ramírez, Mario A.; Bohmwald, Karen; González, Pablo A.; Bueno Ramírez, Susan; Kalergis, Alexis M.
- ItemContribution of Fcγ Receptor-Mediated Immunity to the Pathogenesis Caused by the Human Respiratory Syncytial Virus.(2019) Acevedo, Orlando A.; Díaz, Fabián E.; Beals, Tomas E.; Benavente, Felipe M.; Soto, Jorge A.; Escobar-Vera, Jorge; González, Pablo A.; Kalergis, Alexis M.The human Respiratory Syncytial Virus (hRSV) is the leading cause of severe acute lower respiratory tract infections (ALRTIs) in humans at all ages and is the main cause of hospitalization due to pneumonia, asthma, and bronchiolitis in infants. hRSV symptoms mainly develop due to an excessive host immune and inflammatory response in the respiratory tissue. hRSV infection during life is frequent and likely because of non-optimal immunological memory is developed against this virus. Vaccine development against this pathogen has been delayed after the detrimental effects produced in children by vaccination with a formalin-inactivated hRSV preparation (FI-hRSV), which caused enhanced disease upon natural viral infection. Since then, several studies have focused on understanding the mechanisms underlying such disease exacerbation. Along these lines, several studies have suggested that antibodies elicited by immunization with FI-hRSV show low neutralizing capacity and promote the formation of immune complexes containing hRSV (hRSV-ICs), which contribute to hRSV pathogenesis through the engagement of Fc gamma receptors (FcγRs) expressed on the surface of immune cells. Furthermore, a role for FcγRs is supported by studies evaluating the contribution of these molecules to hRSV-induced disease. These studies have shown that FcγRs can modulate viral clearance by the host and the inflammatory response triggered by hRSV infection. In addition, ICs can facilitate viral entry into host cells expressing FcγRs, thus extending hRSV infectivity. In this article, we discuss current knowledge relative to the contribution of hRSV-ICs and FcγRs to the pathogenesis caused by hRSV and their putative role in the exacerbation of the disease caused by this virus after FI-hRSV vaccination. A better understanding FcγRs involvement in the immune response against hRSV will contribute to the development of new prophylactic or therapeutic tools to promote virus clearance with limited inflammatory damage to the airways.
- ItemDifferences in the immune response elicited by two immunization schedules with an inactivated SARS-CoV-2 vaccine in a randomized phase 3 clinical trial(2022) Galvez, Nicolas M. S.; Pacheco, Gaspar A.; Schultz, Barbara M.; Melo-Gonzalez, Felipe; Soto, Jorge A.; Duarte, Luisa F.; Gonzalez, Liliana A.; Rivera-Perez, Daniela; Rios, Mariana; Berrios, Roslye, V; Vazquez, Yaneisi; Moreno-Tapia, Daniela; Vallejos, Omar P.; Andrade, Catalina A.; Hoppe-Elsholz, Guillermo; Iturriaga, Carolina; Urzua, Marcela; Navarrete, Maria S.; Rojas, Alvaro; Fasce, Rodrigo; Fernandez, Jorge; Mora, Judith; Ramirez, Eugenio; Gaete-Argel, Aracelly; Acevedo, Monica L.; Valiente-Echeverria, Fernando; Soto-Rifo, Ricardo; Weiskopf, Daniela; Grifoni, Alba; Sette, Alessandro; Zeng, Gang; Meng, Weining; Gonzalez-Aramundiz, Jose, V; Johnson, Marina; Goldblatt, David; Gonzalez, Pablo A.; Abarca, Katia; Bueno, Susan M.; Kalergis, Alexis M.Background: The development of vaccines to control the coronavirus disease 2019 (COVID-19) pandemic progression is a worldwide priority. CoronaVac is an inactivated severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccine approved for emergency use with robust efficacy and immunogenicity data reported in trials in China, Brazil, Indonesia, Turkey, and Chile. Methods: This study is a randomized, multicenter, and controlled phase 3 trial in healthy Chilean adults aged & GE;18 years. Volunteers received two doses of CoronaVac separated by 2 (0-14 schedule) or 4 weeks (0-28 schedule); 2302 volunteers were enrolled, 440 were part of the immunogenicity arm, and blood samples were obtained at different times. Samples from a single center are reported. Humoral immune responses were evaluated by measuring the neutralizing capacities of circulating antibodies. Cellular immune responses were assessed by ELISPOT and flow cytometry. Correlation matrixes were performed to evaluate correlations in the data measured. Results: Both schedules exhibited robust neutralizing capacities with the response induced by the 0-28 schedule being better. No differences were found in the concentration of antibodies against the virus and different variants of concern (VOCs) between schedules. Stimulation of peripheral blood mononuclear cells (PBMCs) with Mega pools of Peptides (MPs) induced the secretion of interferon (IFN)-gamma and the expression of activation induced markers in CD4(+) T cells for both schedules. Correlation matrixes showed strong correlations between neutralizing antibodies and IFN-gamma secretion. Conclusions: Immunization with CoronaVac in Chilean adults promotes robust cellular and humoral immune responses. The 0-28 schedule induced a stronger humoral immune response than the 0-14 schedule.
- ItemFemale offspring gestated in hypothyroxinemia and infected with human Metapneumovirus (hMPV) suffer a more severe infection and have a higher number of activated CD8+ T lymphocytes(2022) Funes, Samanta C.; Rios, Mariana; Fernandez-Fierro, Ayleen; Rivera-Perez, Daniela; Soto, Jorge A.; Valbuena, Jose R.; Altamirano-Lagos, Maria J.; Gomez-Santander, Felipe; Jara, Evelyn L.; Zoroquiain, Pablo; Roa, Juan C.; Kalergis, Alexis M.; Riedel, Claudia A.Maternal thyroid hormones (THs) are essential for the appropriate development of the fetus and especially for the brain. Recently, some studies have shown that THs deficiency can also alter the immune system development of the progeny and their ability to mount an appropriate response against infectious agents. In this study, we evaluated whether adult mice gestated under hypothyroxinemia (Hpx) showed an altered immune response against infection with human metapneumovirus (hMPV). We observed that female mice gestated under Hpx showed higher clinical scores after seven days of hMPV infection. Besides, males gestated under Hpx have higher lung viral loads at day seven post-infection. Furthermore, the female offspring gestated in Hpx have already reduced the viral load at day seven and accordingly showed an increased proportion of activated (CD71(+) and FasL(+)) CD8(+) T cells in the lungs, which correlated with a trend for a higher histopathological clinical score. These results support that T-4 deficiency during gestation might condition the offspring differently in males and females, enhancing their ability to respond to hMPV.
- ItemHuman metapneumovirus respiratory infection affects both innate and adaptive intestinal immunity(2024) Sepulveda-Alfaro, Javiera; Catalan, Eduardo A.; Vallejos, Omar P.; Ramos-Tapia, Ignacio; Madrid-Munoz, Cristobal; Mendoza-Leon, Maria J.; Suazo, Isidora D.; Rivera-Asin, Elizabeth; Silva, Pedro H.; Alvarez-Mardones, Oscar; Castillo-Godoy, Daniela P.; Riedel, Claudia A.; Schinnerling, Katina; Ugalde, Juan A.; Soto, Jorge A.; Bueno, Susan M.; Kalergis, Alexis M.; Melo-Gonzalez, FelipeIntroduction Respiratory infections are one of the leading causes of morbidity and mortality worldwide, mainly in children, immunocompromised people, and the elderly. Several respiratory viruses can induce intestinal inflammation and alterations in intestinal microbiota composition. Human metapneumovirus (HMPV) is one of the major respiratory viruses contributing to infant mortality in children under 5 years of age worldwide, and the effect of this infection at the gut level has not been studied.Methods Here, we evaluated the distal effects of HMPV infection on intestinal microbiota and inflammation in a murine model, analyzing several post-infection times (days 1, 3, and 5). Six to eight-week-old C57BL/6 mice were infected intranasally with HMPV, and mice inoculated with a non-infectious supernatant (Mock) were used as a control group.Results We did not detect HMPV viral load in the intestine, but we observed significant changes in the transcription of IFN-gamma in the colon, analyzed by qPCR, at day 1 post-infection as compared to the control group. Furthermore, we analyzed the frequencies of different innate and adaptive immune cells in the colonic lamina propria, using flow cytometry. The frequency of monocyte populations was altered in the colon of HMPV -infected mice at days 1 and 3, with no significant difference from control mice at day 5 post-infection. Moreover, colonic CD8+ T cells and memory precursor effector CD8+ T cells were significantly increased in HMPV-infected mice at day 5, suggesting that HMPV may also alter intestinal adaptive immunity. Additionally, we did not find alterations in antimicrobial peptide expression, the frequency of colonic IgA+ plasma cells, and levels of fecal IgA. Some minor alterations in the fecal microbiota composition of HMPV -infected mice were detected using 16s rRNA sequencing. However, no significant differences were found in beta-diversity and relative abundance at the genus level.Discussion To our knowledge, this is the first report describing the alterations in intestinal immunity following respiratory infection with HMPV infection. These effects do not seem to be mediated by direct viral infection in the intestinal tract. Our results indicate that HMPV can affect colonic innate and adaptive immunity but does not significantly alter the microbiota composition, and further research is required to understand the mechanisms inducing these distal effects in the intestine.
- ItemImmunization with a Mixture of Nucleoprotein from Human Metapneumovirus and AbISCO-100 Adjuvant Reduces Viral Infection in Mice Model(2018) Soto, Daniel A.; Soto, Jorge A.; Céspedes, Pablo F.; Muena, Nicolás A.; Gárate, Diego S.; Kalergis Parra, Alexis Mikes; Vasquez, Abel E.; Ibáñez, Francisco J.
- ItemInduction of Protective Immunity by a Single Low Dose of a Master Cell Bank cGMP-rBCG-P Vaccine Against the Human Metapneumovirus in Mice(2021) Soto, Jorge A.; Galvez, Nicolas M. S.; Pacheco, Gaspar A.; Canedo-Marroquin, Gisela; Bueno, Susan M.; Kalergis, Alexis M.Human metapneumovirus (hMPV) is an emergent virus, which mainly infects the upper and lower respiratory tract epithelium. This pathogen is responsible for a significant portion of hospitalizations due to bronchitis and pneumonia in infants and the elderly worldwide. hMPV infection induces a pro-inflammatory immune response upon infection of the host, which is not adequate for the clearance of this pathogen. The lack of knowledge regarding the different molecular mechanisms of infection of this virus has delayed the licensing of effective treatments or vaccines. As part of this work, we evaluated whether a single and low dose of a recombinant Mycobacterium bovis Bacillus Calmette-Guerin (BCG) expressing the phosphoprotein of hMPV (rBCG-P) can induce a protective immune response in mice. Immunization with the rBCG-P significantly decreased neutrophil counts and viral loads in the lungs of infected mice at different time points. This immune response was also associated with a modulated infiltration of innate cells into the lungs, such as interstitial macrophages (IM) and alveolar macrophages (AM), activated CD4(+) and CD8(+) T cells, and changes in the population of differentiated subsets of B cells, such as marginal zone B cells and plasma cells. The humoral immune response induced by the rBCG-P led to an early and robust IgA response and a late and constant IgG response. Finally, we determined that the transfer of cells or sera from immunized and infected mice to naive mice promoted an efficient viral clearance. Therefore, a single and low dose of rBCG-P can protect mice from the disease caused by hMPV, and this vaccine could be a promising candidate for future clinical trials.
- ItemInnate Immune Components That Regulate the Pathogenesis and Resolution of hRSV and hMPV Infections(2020) Andrade, Catalina A.; Pacheco, Gaspar A.; Gálvez, Nicolas M. S.; Soto, Jorge A.; Bueno Ramírez, Susan; Kalergis, Alexis M.The human respiratory syncytial virus (hRSV) and human Metapneumovirus (hMPV) are two of the leading etiological agents of acute lower respiratory tract infections, which constitute the main cause of mortality in infants. However, there are currently approved vaccines for neither hRSV nor hMPV. Moreover, despite the similarity between the pathology caused by both viruses, the immune response elicited by the host is different in each case. In this review, we discuss how dendritic cells, alveolar macrophages, neutrophils, eosinophils, natural killer cells, innate lymphoid cells, and the complement system regulate both pathogenesis and the resolution of hRSV and hMPV infections. The roles that these cells play during infections by either of these viruses will help us to better understand the illnesses they cause. We also discuss several controversial findings, relative to some of these innate immune components. To better understand the inflammation in the lungs, the role of the respiratory epithelium in the recruitment of innate immune cells is briefly discussed. Finally, we review the main prophylactic strategies and current vaccine candidates against both hRSV and hMPV.
- ItemInvolvement of trained immunity during autoimmune responses(2023) Mora, Valentina P.; Loaiza, Ricardo A.; Soto, Jorge A.; Bohmwald, Karen; Kalergis, Alexis M.Recently, it has been described that innate immune cells such as monocytes, macrophages, and natural killer cells can develop a non-specific immune response induced by different stimuli, including lipopolysaccharides, Mycobacterium bovis Bacillus Calmette-Gue & PRIME;rin, and oxidized low-density lipoprotein. This non-specific immune response has been named "trained immunity," whose mechanism is essential for host defense and vaccine response, promoting better infection control. However, limited information about trained immunity in other noninfectious diseases, such as autoimmune illness, has been reported. The complexity of autoimmune pathology arises from dysfunctions in the innate and adaptive immune systems, triggering different clinical outcomes depending on the disease. Nevertheless, T and B cell function dysregulation is the most common characteristic associated with autoimmunity by promoting the escape from central and peripheral tolerance. Despite the importance of adaptative immunity to autoimmune diseases, the innate immune system also plays a prominent and understudied role in these pathologies. Accordingly, epigenetic and metabolic changes associated with innate immune cells that undergo a trained process are possible new therapeutic targets for autoimmune diseases. Even so, trained immunity can be beneficial or harmful in autoimmune diseases depending on several factors associated with the stimuli. Here, we reviewed the role of trained immunity over the innate immune system and the possible role of these changes in common autoimmune diseases, including Systemic Lupus Erythematosus, Rheumatoid Arthritis, Multiple Sclerosis, and Type 1 Diabetes.
- ItemManagement of gastrointestinal bleeding: Society of Abdominal Radiology (SAR) Institutional Survey(2022) Fidler, Jeff L.; Guglielmo, Flavius F.; Brook, Olga R.; Strate, Lisa L.; Bruining, David H.; Gupta, Avneesh; Allen, Brian C.; Anderson, Mark A.; Wells, Michael L.; Ramalingam, Vijay; Gunn, Martin L.; Grand, David J.; Gee, Michael S.; Huete, Alvaro; Khandalwal, Ashish; Sokhandon, Farnoosh; Park, Seong Ho; Yoo, Don C.; Soto, Jorge A.Despite guidelines developed to standardize the diagnosis and management of gastrointestinal (GI) bleeding, significant variability remains in recommendations and practice. The purpose of this survey was to obtain information on practice patterns for the evaluation of overt lower GI bleeding (LGIB) and suspected small bowel bleeding. A 34-question electronic survey was sent to all Society of Abdominal Radiology (SAR) members. Responses were received from 52 unique institutions (40 from the United States). Only 26 (50%) utilize LGIB management guidelines. 32 (62%) use CT angiography (CTA) for initial evaluation in unstable patients. In stable patients with suspected LGIB, CTA is the preferred initial exam at 21 ( 40%) versus colonoscopy at 24 (46%) institutions. CTA use increases after hours for both unstable (n = 32 vs. 35, 62% vs. 67%) and stable patients (n = 21 vs. 27, 40% vs 52%). CTA is required before conventional angiography for stable ( n = 36, 69%) and unstable (n = 15, 29%) patients. 38 (73%) institutions obtain two post-contrast phases for CTA. 49 (94%) institutions perform CT enterography (CTE) for occult small bowel bleeding with capsule endoscopy (n = 26, 50%) and CTE (n = 21, 40%) being the initial test performed. 35 (67%) institutions perform multiphase CTE for occult small bowel bleeding. In summary, stable and unstable patients with overt lower GI are frequently imaged with CTA, while CTE is frequently performed for suspected occult small bowel bleeding.
- ItemModulation of Immune Cells as a Therapy for Cutaneous Lupus Erythematosus(2022) Soto, Jorge A.; Melo-González, Felipe; Riedel, Claudia A.; Bueno Ramírez, Susan Marcelo; Kalergis, Alexis M.
- ItemPartial long-term clinical improvement after a BCG challenge in systemic lupus erythematosus-prone mice(2024) Mora, Valentina P.; Quero, Francisco B.; Troncoso-Bravo, Tays; Orellana, Claudia; Pereira, Patricia; Mackern-Oberti, Juan P.; Funes, Samanta C.; Soto, Jorge A.; Bohmwald, Karen; Bueno, Susan M.; Kalergis, Alexis M.Systemic Lupus Erythematosus (SLE) is an autoimmune disorder that causes a breakdown of immune tolerance. Current treatments mainly involve general immunosuppression, increasing the risk of infections. On the other hand, Bacillus Calmette-Gu & eacute;rin (BCG) has been investigated as a potential therapy for autoimmune diseases in recent years, prompting an ongoing investigation. This study aimed to evaluate the effect of BCG vaccination on early and late clinical presentation of SLE in a murine disease model. MRL/MPJ-Faslpr mice were immunized with BCG or treated with PBS as a control. The progress of the disease was evaluated at 27 days post-immunization (dpi) (early) and 56 dpi (late). Clinical parameters and proteinuria were monitored. Blood samples were collected for measurement of antinuclear antibodies (ANAs), anti-double-stranded DNA (anti-dsDNA), and cytokine determination was performed using ELISA. Samples collected from mice were analyzed by flow cytometry and histopathology. We observed a clinical improvement in BCG-treated mice, reduced proteinuria in the latter stages of the disease, and decreased TNF-alpha. However, BCG did not elicit significant changes in ANAs, anti-dsDNA, histopathological scores, or immune cell infiltration. BCG was only partially beneficial in an SLE mouse model, and further research is needed to determine whether the immunity induced by this vaccine can counteract lupus's autoimmune response.
- ItemThe Optimisation of the Expression of Recombinant Surface Immunogenic Protein of Group B Streptococcus in Escherichia coli by Response Surface Methodology Improves Humoral Immunity(2018) Diaz-Dinamarca, Diego A.; Jerias, Jose I.; Soto, Daniel A.; Soto, Jorge A.; Diaz, Natalia V.; Leyton, Yessica Y.; Villegas, Rodrigo A.; Kalergis Parra, Alexis Mikes; Vasquez, Abel E.
- ItemThe Role of Imaging for Gastrointestinal Bleeding: Consensus Recommendations From the American College of Gastroenterology and Society of Abdominal Radiology(2024) Sengupta, Neil; Kastenberg, David M.; Bruining, David H.; Latorre, Melissa; Leighton, Jonathan A.; Brook, Olga R.; Wells, Michael L.; Guglielmo, Flavius F.; Naringrekar, Haresh V.; Gee, Michael S.; Soto, Jorge A.; Park, Seong Ho; Yoo, Don C.; Ramalingam, Vijay; Huete, Alvaro; Khandelwal, Ashish; Gupta, Avneesh; Allen, Brian C.; Anderson, Mark A.; Dane, Bari R.; Sokhandon, Farnoosh; Grand, David J.; Tse, Justin R.; Fidler, Jeff L.Gastrointestinal (GI) bleeding is the most common GI diagnosis leading to hospitalization within the United States. Prompt diagnosis and treatment of GI bleeding is critical to improving patient outcomes and reducing high healthcare utilization and costs. Radiologic techniques including computed tomography angiography, catheter angiography, computed tomography enterography, magnetic resonance enterography, nuclear medicine red blood cell scan, and technetium-99m pertechnetate scintigraphy (Meckel scan) are frequently used to evaluate patients with GI bleeding and are complementary to GI endoscopy. However, multiple management guidelines exist which differ in the recommended utilization of these radiologic examinations. This variability can lead to confusion as to how these tests should be used in the evaluation of GI bleeding. In this document, a panel of experts from the American College of Gastroenterology and Society of Abdominal Radiology provide a review of the radiologic examinations used to evaluate for GI bleeding including nomenclature, technique, performance, advantages, and limitations. A comparison of advantages and limitations relative to endoscopic examinations is also included. Finally, consensus statements and recommendations on technical parameters and utilization of radiologic techniques for GI bleeding are provided.