Browsing by Author "Sanhueza, Jorge"
Now showing 1 - 5 of 5
Results Per Page
Sort Options
- ItemMagnetotelluric image of the Patagonian slab window: Constraints on upper mantle physical properties and sources of intraplate magmatism(2024) Vargas, Jaime Araya; Sanhueza, Jorge; Diaz, Daniel; Segovia, Maria Jose; Pasten-Araya, Francisco; Slezak, KatarzynaThe Patagonian slab window (PSW) is a region of the Southamerican subduction zone where the absence of subducted slabs is interpreted, due to the subduction of the Chile Mid-Ocean Ridge at the Chile Triple Junction. Here we report the results of a long-period magnetotelluric (MT) study conducted in two 300 km-long trenchparallel transects crossing the northern boundary of the PSW in the proximal backarc. We modeled the MT data using 3-D inversion, obtaining an electrical resistivity model of the continental crust and upper mantle up to a depth of similar to 150 km. Our model shows a heterogeneous resistivity structure in the uppermost mantle, dominated by resistivities >300 Omega m below the array of sites even within the PSW, and some low-resistivity zones (LRZs, <10 Omega m) mainly at the edge of the array. Using petrophysical models, we estimated the mantle temperature, water content, melt fraction, and viscosity based on obtained resistivity values and a preexistent model of P-wave velocity (Vp) at 50 km and 100 km depth. These estimates suggest that the uppermost mantle within the PSW region is heterogeneous and dominated by high-viscosity blocks, compatible with the continental mantle lithosphere or even subducted slabs. Based on relatively hot and low-viscosity zones estimated in the periphery of LRZs, we interpret the presence of asthenospheric mantle in areas where LRZs coincide with relatively low Vp. According to this interpretation, asthenospheric upwelling in the study area at depths <= 150 km would be localized rather than ubiquitous over the interpreted extent for the PSW. Such localized asthenosphere upwelling processes in the past could explain the scattered distribution of Neogene basaltic lavas in the southern Patagonia backarc. The continental crust exhibits LRZs in the upper and lower crust. Remarkably, ensembles of LRZs at different crustal depths within the presumable area of the PSW were found below the General Carrera Lake, and towards the North Patagonian Icefield, likely indicating the presence of hidden intraplate magmatic and/or hydrothermal systems.
- ItemRheological, petrophysical and geometrical constraints of a subduction channel from a numerical model perspective: Insights from La Cabana Paleozoic peridotites, Coastal Cordillera of south-central Chile(2022) Sanhueza, Jorge; Yanez, Gonzalo; Barra, Fernando; Maringue, Jose; Figueroa, Ronny; Saez, EstebanThe emplacement of ultramafic blocks in accretionary complexes poses a geodynamic problem due to their negative buoyancy. In this study, we explore plausible emplacement scenarios for peridotite bodies in the Coastal Cordillera of south-central Chile by combining geophysical observations, numerical modeling and available petrological data for ultramafic blocks exhumed along the subduction channel. The La Cabana massif is the largest serpentinized peridotite complex yet recognized in the Coastal Cordillera, however, its size and petrophysical characteristics remain unknown. The geophysical measurements were performed to determine the size of this body, involving magnetic airborne surveys and electrical resistivity tomography. Inversion data show that the largest ultramafic block in La Cabana is 3 km long, 1.5 km wide and at least 1.2 km deep. This result constrains the characteristics of the block transported by the subduction channel. In the second step, we developed a numerical model for the subduction channel assuming a viscous rheology. In this modeling effort we search for tectonic scenarios that provide adequate conditions for the exhumation of the ultramafic body in La Cabana. These scenarios included a combination of key parameters, subduction angle dip and velocity, subduction channel geometry, rheology and density contrast. Scenarios compatible with the exhumation of La Cabana body type includes channel viscosity range of 10(19-20) Pa s, fast exhumation rates at mantle depths (10-20 mm/yr; >30-40 km), steep subduction angles (30 degrees-60 degrees), subduction channel widths of 3-5 km, density contrast between -200 and -400 kg/m(3) and a body diameter of 1.5 km which is consistent with our geophysical inversions. On the contrary, slow exhumation rates (similar to 1 mm/yr), low subduction angles (15 degrees), high-density contrasts (-400 to -600 kg/m(3)) and bodies larger than 1.5 km wide, are not viable exhumation scenarios. The methodology developed provided insights to infer ancient subduction channel geometries and rheologies that include peridotite.
- ItemRidge Subduction: Unraveling the Consequences Linked to a Slab Window Development Beneath South America at the Chile Triple Junction(2023) Sanhueza, Jorge; Yanez, Gonzalo; Buck, W. Roger; Vargas, Jaime Araya; Veloso, EugenioThe subduction of an active spreading center generates a clear signature in the temporal evolution of subduction zones. It disrupts the typical arc-type magmatism and intraplate seismicity, enhances the emplacement of backarc plateau lava and profoundly change the tectonics and topographic relief. These distinct observations are commonly linked to a slab window opening and mantle upwelling. The Chile Triple Junction provides the ideal setup to study the mid-ocean ridge subduction process where both sides of the spreading center continue to subduct. Here, we use 2-D numerical petrological-thermomechanical modeling to focus on transient geodynamic processes caused by mid-ocean ridge subduction. Model results show slab separation along the ridge axis with the opening of a slab window. During the opening, partial melts from the spreading center migrate toward the subcontinental mantle and high temperatures in the forearc are predicted. The temporal evolution of the modeled temperature is consistent with observed heat flow data, and with magmatism and high-temperature metamorphism recorded in Chilean forearc rocks. Such migrated partial melts might explain the low viscosity inferred and low seismic velocity anomalies imaged in the slab window beneath South America, and the common geochemical signature of the Chile Ridge, the Taitao Ophiolite and the backarc magmatism. Following slab separation, our models suggest forearc uplift and changes in the stress regime, processes which are consistent with deformation records. Summarizing, our model of the geodynamic evolution of the Chile Ridge subduction provides a consistent framework that explains diverse records of magmatism, metamorphism, deformation and mantle physical properties.
- ItemTowards linking slab window geodynamics with the geophysical and geochemical signature of the upper mantle(2023) Sanhueza, Jorge; Yanez, Gonzalo; Buck, W. Roger; Sawant, Amol Dayanand; Vargas, Jaime Araya; Lloyd, Andrew J.Slab windows have clear consequences for surface observations that are the manifestations of asthenospheric upwelling and uppermost mantle temperature anomalies. In this contribution we link geophysical and geochemical observations from modern slab windows to the asthenospheric flow, temperature field and extent of melting using different geometries. We use an analytical solution for the slab window geometry and implement this solution in 3D steady-state thermomechanical models to calculate the temperature and velocity field. Our results show that upwelling (>1 cm/yr) and temperature anomalies (>1400 C-degrees) are controlled by the ratio between the half-spreading rate and velocity of the overriding plate. The extent of melting depends on both the ratio of these velocities and ridge obliquity while flow patterns are controlled only by ridge obliquity. Finally, we construct ternary diagrams to estimate the efficiency of matrix/melt upwelling and maximum mean mantle temperatures based on plate kinematics and ridge obliquity. This novel approach was used to investigate the slab windows in Antarctica, South America and western North America.
- ItemUnravelling geological controls on groundwater flow and surface water-groundwater interaction in mountain systems: A multi-disciplinary approach(ELSEVIER, 2023) Marti, Etienne Bernard Christian; Leray, Sarah Tiphaine Lucile; Villela, Daniela; Maringue Canales, José Ignacio; Yañez Morroni, Gonzalo José; Salazar, Esteban; Poblete, Fernando; Jiménez, Jose; Reyes, Gabriela; Poblete Farias, Guillermo Hernán; Huaman Sevilla, Zeidy Lisseth; Figueroa González, Ronny Javier; Araya Vargas, Jaime Andrés; Sanhueza, Jorge; Muñoz, Marjorie; Charrier, Reynaldo; Fernández, GabrielMountain water resources are considered to be the world's water towers. Still, despite their importance for downstream societies and ecosystems and their vulnerability to climate change, they remain poorly understood - It is the case in particular of mountain groundwater systems. Their complexity makes them difficult to conceptualize, while their remoteness makes them difficult to study, both observationally and instrumentally. Understanding mountain hydrogeological systems is mostly limited by the lack of characterization of the subsurface geologic framework and by the limited understanding of the role of geological structures on groundwater flow and on surface water-groundwater interaction. Removing methodological barriers is therefore a necessary step for improving the understanding of mountain hydrogeological systems. To tackle this problem, we develop a comprehensive multi-disciplinary approach to gain insights into the hydrogeological role of geological structures in ungauged mountain catchments. The methodology consists of several complementary methods: (1) geological mapping at multiple scales; (2) a geophysical study including on ground Electrical Resistivity Tomography (ERT) and, gravimetry transects, and a UAV-based magnetic survey; (3) hydraulic data, including a 9 km long transect of streamflow measurements in the recession period, the longterm Normalized Difference Vegetation Index (NDVI), and varied hydric markers (e.g., a thermal spring and a puddle). The methodology is tested in the Parque Nacional del Rio Clarillo, an ungauged catchment in the Andes Mountains (& AP;130 km2) that is illustrative of the complexity of mountain hydrosystems featuring fault zones, weathered zones, intrusive rocks, and volcano-sedimentary successions.An increase of approximately 50% in the streamflow is observed over a short distance of 1 km. Such a localized and significant increase in the baseflow is not related to any superficial supply and can only be explained by groundwater exfiltration. Based on the multiscale geological mapping and geophysical survey, a regional N-S fault and a secondary set of E-W local faults are identified in the vicinity of the resurgence area, which conjointly are likely to export groundwater from a neighbouring subcatchment up to the resurgence area. Downstream of the resurgence area, no significant change in the baseflow is observed, corresponding to the presence of an impermeable granitic pluton identified by the geological and geophysical mapping. Finally, a fractured zone in the Andean foothills is identified in the volcanic unit, which coincides with a perennial thermal spring, indicating upwelling flow and hydrogeological connectivity between the mountain block and the alluvial basin.The results strongly support the ability of the proposed methodology to identify geological structures that substantially impact the evolution of the baseflow through the catchment. The complementary multi-disciplinary methods are used innovatively to infer the link between geological and hydrogeological structures. The methodology does not aim to fully characterize the geological framework of the catchment but pragmatically focuses on hydrogeologically pertinent structures that may impact baseflow and consequently catchment management.
