Browsing by Author "Salomon, Tatiana"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- ItemEffect of a lung rest strategy during ECMO in a porcine acute lung injury model(2015) Araos, J.; Tapia, Pablo; Alegría, Leyla; García Cañete, Patricia; Rodríguez, F.; Amthauer, M.; Castro, G.; Soto, Dagoberto; Damiani Rebolledo, L. Felipe; Bugedo Tarraza, Guillermo; Bruhn, Alejandro; Cruces, Pablo; Salomon, Tatiana; Erranz, B.; Carreño, P.; Medina, T.
- ItemEffect of positive end expiratory pressure on lung injury and haemodynamics during experimental acute respiratory distress syndrome treated with extracorporeal membrane oxygenation and near-apnoeic ventilation(2021) Araos, Joaquin; Alegría Vargas, Leyla; Garcia, Aline; Cruces, Pablo; Soto Muñoz, Dagoberto Igor; Erranz, Benjamín; Salomon, Tatiana; Medina, Tania; García Valdes, Patricio Hernán; Dubo, Sebastian; Bachmann Barron, María Consuelo; Basoalto Escobar, Roque Ignacio; Valenzuela, Emilio Daniel; Rovegno Echavarría, Maximiliano David; Vera Alarcón, María Magdalena; Retamal Montes, Jaime; Cornejo Rosas, Rodrigo Alfredo; Bugedo Tarraza, Guillermo; Bruhn, AlejandroBackground: Lung rest has been recommended during extracorporeal membrane oxygenation (ECMO) for severe acute respiratory distress syndrome (ARDS). Whether positive end-expiratory pressure (PEEP) confers lung protection during ECMO for severe ARDS is unclear. We compared the effects of three different PEEP levels whilst applying near-apnoeic ventilation in a model of severe ARDS treated with ECMO. Methods: Acute respiratory distress syndrome was induced in anaesthetised adult male pigs by repeated saline lavage and injurious ventilation for 1.5 h. After ECMO was commenced, the pigs received standardised near-apnoeic ventilation for 24 h to maintain similar driving pressures and were randomly assigned to PEEP of 0, 10, or 20 cm H2O (n¼7 per group). Respiratory and haemodynamic data were collected throughout the study. Histological injury was assessed by a pathologist masked to PEEP allocation. Lung oedema was estimated by wet-to-dry-weight ratio. Results: All pigs developed severe ARDS. Oxygenation on ECMO improved with PEEP of 10 or 20 cm H2O, but did not in pigs allocated to PEEP of 0 cm H2O. Haemodynamic collapse refractory to norepinephrine (n¼4) and early death (n¼3) occurred after PEEP 20 cm H2O. The severity of lung injury was lowest after PEEP of 10 cm H2O in both dependent and non-dependent lung regions, compared with PEEP of 0 or 20 cm H2O. A higher wet-to-dry-weight ratio, indicating worse lung injury, was observed with PEEP of 0 cmH2O. Histological assessment suggested that lung injury was minimised with PEEP of 10 cm H2O. Conclusions: During near-apnoeic ventilation and ECMO in experimental severe ARDS, 10 cm H2O PEEP minimised lung injury and improved gas exchange without compromising haemodynamic stability.
- ItemRenal decapsulation prevents intrinsic renal compartment syndrome in ischemia-reperfusion - Induced acute kidney injury : a physiologic approach(2018) Cruces, Pablo; Lillo, Pablo; Salas, Camila; Salomon, Tatiana; Lillo, Felipe; González, Carlos; Pacheco, Alejandro; Hurtado Sepúlveda, Daniel