Browsing by Author "Rubio, Carlos"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
- ItemCosmological Fluctuations in Delta Gravity(2023) Alfaro Solís, Jorge Luis; Rubio, Carlos; San Martín, MarcoAbout 70% of the Universe is Dark Energy, but the physics community still does not know what it is. Delta gravity (DG) is an alternative theory of gravitation that could solve this cosmological problem. Previously, we studied the Universe’s accelerated expansion, where DG was able to explain the SNe-Ia data successfully. In this work, we computed the cosmological fluctuations in DG that give rise to the CMB through a hydrodynamic approximation. We calculated the gauge transformations for the metric and the perfect fluid to present the equations of the evolution of cosmological fluctuations. This provided the necessary equations to solve the scalar TT power spectrum in a semi-analytical way. These equations are useful for comparing the DG theory with astronomical observations and thus being able to constrain the DG cosmology.
- ItemGravitational decoupled anisotropies in compact stars(2018) Gabbanelli, Luciano; Rincón, Ángel; Rubio, Carlos
- ItemHubble tension and matter inhomogeneities: A theoretical perspective(2023) San Martín, Hormazábal Marco Alfonso; Rubio, CarlosWe have studied how local density perturbations could reconcile the Hubble tension. We reproduced a local void through a perturbed FLRW metric with a potential Φ which depends on both time and space. This method allowed us to obtain a perturbed luminosity distance, which is compared with both local and cosmological data. However, when constraining local cosmological parameters with previous results, we found that neither ΛCDM nor Λ(ω)CDM cannot solve the Hubble tension.
- ItemOn the effects of the modification of the metric in the gravitational context(2020) Rubio, Carlos; Alfaro Solís, Jorge Luis; Pontificia Universidad Católica de Chile. Instituto de FísicaThis thesis consists of two parts: In the first one, simple generic extensions of isotropic Durgapal–Fuloria stars to the anisotropic domain were presented. These anisotropic solutions were obtained by guided minimal deformations over the isotropic system. When the anisotropic sector interacts in a purely gravitational manner, the conditions to decouple both sectors, by means of the minimal geometric deformation approach, were satisfied. Hence, the anisotropic field equations were isolated resulting in a more treatable set of equations. The simplicity of the equations allows one to manipulate the anisotropies that can be implemented in a systematic way to obtain different realistic models for anisotropic configurations. Later on, the observational effects of such anisotropies when measuring the surface redshift were discussed. To conclude, the consistency of the application of the method over the obtained anisotropic configurations was shown. In this manner, different anisotropic sectors can be isolated from each other and modeled in a simple and systematic way. About 70% of the Universe is Dark Energy, but there is still no consensus in the physics community on what the nature of it is. Delta Gravity (DG) is an alternative theory of gravitation that could solve this cosmological problem. DG is able to explain the SNe data successfully. In this work, we explored the cosmological fluctuations that give rise to the CMB through a hydrodynamic approximation. We calculated the gauge transformations for the metric and the perfect fluid to present the equations of the evolution of cosmological fluctuations, providing the necessary equations to solve, in a semi-analytical way, the scalar TT Power Spectrum. These equations were useful for comparing the DG theory with astronomical observations and thus, being able to restrict the DG cosmology, testing the compatibility with the CMB Planck data, which are currently in contradiction with SNe data.This thesis consists of two parts: In the first one, simple generic extensions of isotropic Durgapal–Fuloria stars to the anisotropic domain were presented. These anisotropic solutions were obtained by guided minimal deformations over the isotropic system. When the anisotropic sector interacts in a purely gravitational manner, the conditions to decouple both sectors, by means of the minimal geometric deformation approach, were satisfied. Hence, the anisotropic field equations were isolated resulting in a more treatable set of equations. The simplicity of the equations allows one to manipulate the anisotropies that can be implemented in a systematic way to obtain different realistic models for anisotropic configurations. Later on, the observational effects of such anisotropies when measuring the surface redshift were discussed. To conclude, the consistency of the application of the method over the obtained anisotropic configurations was shown. In this manner, different anisotropic sectors can be isolated from each other and modeled in a simple and systematic way. About 70% of the Universe is Dark Energy, but there is still no consensus in the physics community on what the nature of it is. Delta Gravity (DG) is an alternative theory of gravitation that could solve this cosmological problem. DG is able to explain the SNe data successfully. In this work, we explored the cosmological fluctuations that give rise to the CMB through a hydrodynamic approximation. We calculated the gauge transformations for the metric and the perfect fluid to present the equations of the evolution of cosmological fluctuations, providing the necessary equations to solve, in a semi-analytical way, the scalar TT Power Spectrum. These equations were useful for comparing the DG theory with astronomical observations and thus, being able to restrict the DG cosmology, testing the compatibility with the CMB Planck data, which are currently in contradiction with SNe data.This thesis consists of two parts: In the first one, simple generic extensions of isotropic Durgapal–Fuloria stars to the anisotropic domain were presented. These anisotropic solutions were obtained by guided minimal deformations over the isotropic system. When the anisotropic sector interacts in a purely gravitational manner, the conditions to decouple both sectors, by means of the minimal geometric deformation approach, were satisfied. Hence, the anisotropic field equations were isolated resulting in a more treatable set of equations. The simplicity of the equations allows one to manipulate the anisotropies that can be implemented in a systematic way to obtain different realistic models for anisotropic configurations. Later on, the observational effects of such anisotropies when measuring the surface redshift were discussed. To conclude, the consistency of the application of the method over the obtained anisotropic configurations was shown. In this manner, different anisotropic sectors can be isolated from each other and modeled in a simple and systematic way. About 70% of the Universe is Dark Energy, but there is still no consensus in the physics community on what the nature of it is. Delta Gravity (DG) is an alternative theory of gravitation that could solve this cosmological problem. DG is able to explain the SNe data successfully. In this work, we explored the cosmological fluctuations that give rise to the CMB through a hydrodynamic approximation. We calculated the gauge transformations for the metric and the perfect fluid to present the equations of the evolution of cosmological fluctuations, providing the necessary equations to solve, in a semi-analytical way, the scalar TT Power Spectrum. These equations were useful for comparing the DG theory with astronomical observations and thus, being able to restrict the DG cosmology, testing the compatibility with the CMB Planck data, which are currently in contradiction with SNe data.This thesis consists of two parts: In the first one, simple generic extensions of isotropic Durgapal–Fuloria stars to the anisotropic domain were presented. These anisotropic solutions were obtained by guided minimal deformations over the isotropic system. When the anisotropic sector interacts in a purely gravitational manner, the conditions to decouple both sectors, by means of the minimal geometric deformation approach, were satisfied. Hence, the anisotropic field equations were isolated resulting in a more treatable set of equations. The simplicity of the equations allows one to manipulate the anisotropies that can be implemented in a systematic way to obtain different realistic models for anisotropic configurations. Later on, the observational effects of such anisotropies when measuring the surface redshift were discussed. To conclude, the consistency of the application of the method over the obtained anisotropic configurations was shown. In this manner, different anisotropic sectors can be isolated from each other and modeled in a simple and systematic way. About 70% of the Universe is Dark Energy, but there is still no consensus in the physics community on what the nature of it is. Delta Gravity (DG) is an alternative theory of gravitation that could solve this cosmological problem. DG is able to explain the SNe data successfully. In this work, we explored the cosmological fluctuations that give rise to the CMB through a hydrodynamic approximation. We calculated the gauge transformations for the metric and the perfect fluid to present the equations of the evolution of cosmological fluctuations, providing the necessary equations to solve, in a semi-analytical way, the scalar TT Power Spectrum. These equations were useful for comparing the DG theory with astronomical observations and thus, being able to restrict the DG cosmology, testing the compatibility with the CMB Planck data, which are currently in contradiction with SNe data.This thesis consists of two parts: In the first one, simple generic extensions of isotropic Durgapal–Fuloria stars to the anisotropic domain were presented. These anisotropic solutions were obtained by guided minimal deformations over the isotropic system. When the anisotropic sector interacts in a purely gravitational manner, the conditions to decouple both sectors, by means of the minimal geometric deformation approach, were satisfied. Hence, the anisotropic field equations were isolated resulting in a more treatable set of equations. The simplicity of the equations allows one to manipulate the anisotropies that can be implemented in a systematic way to obtain different realistic models for anisotropic configurations. Later on, the observational effects of such anisotropies when measuring the surface redshift were discussed. To conclude, the consistency of the application of the method over the obtained anisotropic configurations was shown. In this manner, different anisotropic sectors can be isolated from each other and modeled in a simple and systematic way. About 70% of the Universe is Dark Energy, but there is still no consensus in the physics community on what the nature of it is. Delta Gravity (DG) is an alternative theory of gravitation that could solve this cosmological problem. DG is able to explain the SNe data successfully. In this work, we explored the cosmological fluctuations that give rise to the CMB through a hydrodynamic approximation. We calculated the gauge transformations for the metric and the perfect fluid to present the equations of the evolution of cosmological fluctuations, providing the necessary equations to solve, in a semi-analytical way, the scalar TT Power Spectrum. These equations were useful for comparing the DG theory with astronomical observations and thus, being able to restrict the DG cosmology, testing the compatibility with the CMB Planck data, which are currently in contradiction with SNe data.This thesis consists of two parts: In the first one, simple generic extensions of isotropic Durgapal–Fuloria stars to the anisotropic domain were presented. These anisotropic solutions were obtained by guided minimal deformations over the isotropic system. When the anisotropic sector interacts in a purely gravitational manner, the conditions to decouple both sectors, by means of the minimal geometric deformation approach, were satisfied. Hence, the anisotropic field equations were isolated resulting in a more treatable set of equations. The simplicity of the equations allows one to manipulate the anisotropies that can be implemented in a systematic way to obtain different realistic models for anisotropic configurations. Later on, the observational effects of such anisotropies when measuring the surface redshift were discussed. To conclude, the consistency of the application of the method over the obtained anisotropic configurations was shown. In this manner, different anisotropic sectors can be isolated from each other and modeled in a simple and systematic way. About 70% of the Universe is Dark Energy, but there is still no consensus in the physics community on what the nature of it is. Delta Gravity (DG) is an alternative theory of gravitation that could solve this cosmological problem. DG is able to explain the SNe data successfully. In this work, we explored the cosmological fluctuations that give rise to the CMB through a hydrodynamic approximation. We calculated the gauge transformations for the metric and the perfect fluid to present the equations of the evolution of cosmological fluctuations, providing the necessary equations to solve, in a semi-analytical way, the scalar TT Power Spectrum. These equations were useful for comparing the DG theory with astronomical observations and thus, being able to restrict the DG cosmology, testing the compatibility with the CMB Planck data, which are currently in contradiction with SNe data.This thesis consists of two parts: In the first one, simple generic extensions of isotropic Durgapal–Fuloria stars to the anisotropic domain were presented. These anisotropic solutions were obtained by guided minimal deformations over the isotropic system. When the anisotropic sector interacts in a purely gravitational manner, the conditions to decouple both sectors, by means of the minimal geometric deformation approach, were satisfied. Hence, the anisotropic field equations were isolated resulting in a more treatable set of equations. The simplicity of the equations allows one to manipulate the anisotropies that can be implemented in a systematic way to obtain different realistic models for anisotropic configurations. Later on, the observational effects of such anisotropies when measuring the surface redshift were discussed. To conclude, the consistency of the application of the method over the obtained anisotropic configurations was shown. In this manner, different anisotropic sectors can be isolated from each other and modeled in a simple and systematic way. About 70% of the Universe is Dark Energy, but there is still no consensus in the physics community on what the nature of it is. Delta Gravity (DG) is an alternative theory of gravitation that could solve this cosmological problem. DG is able to explain the SNe data successfully. In this work, we explored the cosmological fluctuations that give rise to the CMB through a hydrodynamic approximation. We calculated the gauge transformations for the metric and the perfect fluid to present the equations of the evolution of cosmological fluctuations, providing the necessary equations to solve, in a semi-analytical way, the scalar TT Power Spectrum. These equations were useful for comparing the DG theory with astronomical observations and thus, being able to restrict the DG cosmology, testing the compatibility with the CMB Planck data, which are currently in contradiction with SNe data.This thesis consists of two parts: In the first one, simple generic extensions of isotropic Durgapal–Fuloria stars to the anisotropic domain were presented. These anisotropic solutions were obtained by guided minimal deformations over the isotropic system. When the anisotropic sector interacts in a purely gravitational manner, the conditions to decouple both sectors, by means of the minimal geometric deformation approach, were satisfied. Hence, the anisotropic field equations were isolated resulting in a more treatable set of equations. The simplicity of the equations allows one to manipulate the anisotropies that can be implemented in a systematic way to obtain different realistic models for anisotropic configurations. Later on, the observational effects of such anisotropies when measuring the surface redshift were discussed. To conclude, the consistency of the application of the method over the obtained anisotropic configurations was shown. In this manner, different anisotropic sectors can be isolated from each other and modeled in a simple and systematic way. About 70% of the Universe is Dark Energy, but there is still no consensus in the physics community on what the nature of it is. Delta Gravity (DG) is an alternative theory of gravitation that could solve this cosmological problem. DG is able to explain the SNe data successfully. In this work, we explored the cosmological fluctuations that give rise to the CMB through a hydrodynamic approximation. We calculated the gauge transformations for the metric and the perfect fluid to present the equations of the evolution of cosmological fluctuations, providing the necessary equations to solve, in a semi-analytical way, the scalar TT Power Spectrum. These equations were useful for comparing the DG theory with astronomical observations and thus, being able to restrict the DG cosmology, testing the compatibility with the CMB Planck data, which are currently in contradiction with SNe data.This thesis consists of two parts: In the first one, simple generic extensions of isotropic Durgapal–Fuloria stars to the anisotropic domain were presented. These anisotropic solutions were obtained by guided minimal deformations over the isotropic system. When the anisotropic sector interacts in a purely gravitational manner, the conditions to decouple both sectors, by means of the minimal geometric deformation approach, were satisfied. Hence, the anisotropic field equations were isolated resulting in a more treatable set of equations. The simplicity of the equations allows one to manipulate the anisotropies that can be implemented in a systematic way to obtain different realistic models for anisotropic configurations. Later on, the observational effects of such anisotropies when measuring the surface redshift were discussed. To conclude, the consistency of the application of the method over the obtained anisotropic configurations was shown. In this manner, different anisotropic sectors can be isolated from each other and modeled in a simple and systematic way. About 70% of the Universe is Dark Energy, but there is still no consensus in the physics community on what the nature of it is. Delta Gravity (DG) is an alternative theory of gravitation that could solve this cosmological problem. DG is able to explain the SNe data successfully. In this work, we explored the cosmological fluctuations that give rise to the CMB through a hydrodynamic approximation. We calculated the gauge transformations for the metric and the perfect fluid to present the equations of the evolution of cosmological fluctuations, providing the necessary equations to solve, in a semi-analytical way, the scalar TT Power Spectrum. These equations were useful for comparing the DG theory with astronomical observations and thus, being able to restrict the DG cosmology, testing the compatibility with the CMB Planck data, which are currently in contradiction with SNe data.This thesis consists of two parts: In the first one, simple generic extensions of isotropic Durgapal–Fuloria stars to the anisotropic domain were presented. These anisotropic solutions were obtained by guided minimal deformations over the isotropic system. When the anisotropic sector interacts in a purely gravitational manner, the conditions to decouple both sectors, by means of the minimal geometric deformation approach, were satisfied. Hence, the anisotropic field equations were isolated resulting in a more treatable set of equations. The simplicity of the equations allows one to manipulate the anisotropies that can be implemented in a systematic way to obtain different realistic models for anisotropic configurations. Later on, the observational effects of such anisotropies when measuring the surface redshift were discussed. To conclude, the consistency of the application of the method over the obtained anisotropic configurations was shown. In this manner, different anisotropic sectors can be isolated from each other and modeled in a simple and systematic way. About 70% of the Universe is Dark Energy, but there is still no consensus in the physics community on what the nature of it is. Delta Gravity (DG) is an alternative theory of gravitation that could solve this cosmological problem. DG is able to explain the SNe data successfully. In this work, we explored the cosmological fluctuations that give rise to the CMB through a hydrodynamic approximation. We calculated the gauge transformations for the metric and the perfect fluid to present the equations of the evolution of cosmological fluctuations, providing the necessary equations to solve, in a semi-analytical way, the scalar TT Power Spectrum. These equations were useful for comparing the DG theory with astronomical observations and thus, being able to restrict the DG cosmology, testing the compatibility with the CMB Planck data, which are currently in contradiction with SNe data.