Browsing by Author "Rovegno, Maximiliano"
Now showing 1 - 6 of 6
Results Per Page
Sort Options
- ItemAcute activation of hemichannels by ethanol leads to Ca2+-dependent gliotransmitter release in astrocytes(2024) Gómez, Gonzalo I.; García-Rodríguez, Claudia; Marillán, Jesus E.; Vergara, Sergio A.; Alvear, Tanhia F.; Farias-Pasten, Arantza; Sáez, Juan C.; Retamal, Mauricio A.; Rovegno, Maximiliano; Ortiz, Fernando C.; Orellana Roca, Juan AndrésMultiple studies have demonstrated that acute ethanol consumption alters brain function and cognition. Nevertheless, the mechanisms underlying this phenomenon remain poorly understood. Astrocyte-mediated gliotransmission is crucial for hippocampal plasticity, and recently, the opening of hemichannels has been found to play a relevant role in this process. Hemichannels are plasma membrane channels composed of six connexins or seven pannexins, respectively, that oligomerize around a central pore. They serve as ionic and molecular exchange conduits between the cytoplasm and extracellular milieu, allowing the release of various paracrine substances, such as ATP, D-serine, and glutamate, and the entry of ions and other substances, such as Ca2+ and glucose. The persistent and exacerbated opening of hemichannels has been associated with the pathogenesis and progression of several brain diseases for at least three mechanisms. The uncontrolled activity of these channels could favor the collapse of ionic gradients and osmotic balance, the release of toxic levels of ATP or glutamate, cell swelling and plasma membrane breakdown and intracellular Ca2+ overload. Here, we evaluated whether acute ethanol exposure affects the activity of astrocyte hemichannels and the possible repercussions of this phenomenon on cytoplasmatic Ca2+ signaling and gliotransmitter release. Acute ethanol exposure triggered the rapid activation of connexin43 and pannexin1 hemichannels in astrocytes, as measured by time-lapse recordings of ethidium uptake. This heightened activity derived from a rapid rise in [Ca2+](i) linked to extracellular Ca2+ influx and IP3-evoked Ca2+ release from intracellular Ca2+ stores. Relevantly, the acute ethanol-induced activation of hemichannels contributed to a persistent secondary increase in [Ca2+](i). The [Ca2+](i)-dependent activation of hemichannels elicited by ethanol caused the increased release of ATP and glutamate in astroglial cultures and brain slices. Our findings offer fresh perspectives on the potential mechanisms behind acute alcohol-induced brain abnormalities and propose targeting connexin43 and pannexin1 hemichannels in astrocytes as a promising avenue to prevent deleterious consequences of alcohol consumption.
- ItemEvolution of peripheral vs metabolic perfusion parameters during septic shock resuscitation. A clinical-physiologic study(W B SAUNDERS CO-ELSEVIER INC, 2012) Hernandez, Glenn; Pedreros, Cesar; Veas, Enrique; Bruhn, Alejandro; Romero, Carlos; Rovegno, Maximiliano; Neira, Rodolfo; Bravo, Sebastian; Castro, Ricardo; Kattan, Eduardo; Ince, CanPurpose: Perfusion assessment during septic shock resuscitation is difficult and usually complex determinations. Capillary refill time (CRT) and central-to-toe temperature difference (Tc-toe) have been proposed as objective reproducible parameters to evaluate peripheral perfusion. The comparative evolution of peripheral vs metabolic perfusion parameters in septic shock resuscitation has not been studied. We conducted a prospective observational clinical-physiologic study to address this subject.
- ItemHipotermia intravascular prolongada en un paciente con hipertensión endocraneana refractaria(SOC MEDICA SANTIAGO, 2012) Rovegno, Maximiliano; Luis Valenzuela, Jose; Mellado, Patricio; Andresen, MaxThe use of hypothermia after cardiac arrest caused by ventricular fibrillation is a standard clinical practice, however its use for neuroprotection has been extended to other conditions. We report a 23-year-old male with intracranial hypertension secondary to a parenchymal hematoma associated to acute hydrocephalus. An arterial malformation was found and embolized. Due to persistent intracranial hypertension, moderate hypothermia with a target temperature of 33 degrees C was started. After 12 hours of hypothermia, intracranial pressure was controlled. After 13 days of hypothermia a definitive control of intracranial pressure was achieved. The patient was discharged 40 days after admission, remains with a mild hemiparesia and is reassuming his university studies. (Rev Med Chile 2012; 140: 219-224).
- ItemPannexin-1 channel opening is critical for COVID-19 pathogenesis(CELL PRESS, 2021) Luu, Ross; Valdebenito, Silvana; Scemes, Eliana; Cibelli, Antonio; Spray, David C.; Rovegno, Maximiliano; Tichauer, Juan; Cottignies Calamarte, Andrea; Rosenberg, Arielle; Capron, Calude; Belouzard, Sandrine; Dubuisson, Jean; Annane, Djillali; de la Grandmaison, Geoffroy Lorin; Cramer Borde, Elisabeth; Bomsel, Morgane; Eugenin, EliseoSevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2) rapidly rampaged worldwide, causing a pandemic of coronavirus disease (COVID-19), but the biology of SARS-CoV-2 remains under investigation. We demonstrate that both SARS-CoV-2 spike protein and human coronavirus 229E (hCoV-229E) or its purified S protein, one of the main viruses responsible for the common cold, induce the transient opening of Pannexin-1 (Panx-1) channels in human lung epithelial cells. However, the Panx-1 channel opening induced by SARS-CoV-2 is greater and more prolonged than hCoV-229E/S protein, resulting in an enhanced ATP, PGE(2), and IL-1 beta release. Analysis of lung lavages and tissues indicate that Panx-1 mRNA expression is associated with increased ATP, PGE(2), and IL-1 beta levels. Panx-1 channel opening induced by SARS-CoV-2 spike protein is angiotensin-converting enzyme 2 (ACE-2), endocytosis, and furin dependent. Overall, we demonstrated that Panx-1 channel is a critical contributor to SARS-CoV-2 infection and should be considered as an alternative therapy.
- ItemSARS-CoV-2 spike protein S1 activates Cx43 hemichannels and disturbs intracellular Ca2+ dynamics(2023) Prieto Villalobos, Juan Carlos; Lucero, Claudia M.; Rovegno, Maximiliano; Gómez, Gonzalo I.; Retamal, Mauricio A.; Orellana Roca, Juan AndrésSevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes the ongoing coronavirus disease 2019 (COVID-19). An aspect of high uncertainty is whether the SARS-CoV-2 per se or the systemic inflammation induced by viral infection directly affects cellular function and survival in different tissues. It has been postulated that tissue dysfunction and damage observed in COVID-19 patients may rely on the direct effects of SARS-CoV-2 viral proteins. Previous evidence indicates that the human immunodeficiency virus and its envelope protein gp120 increase the activity of connexin 43 (Cx43) hemichannels with negative repercussions for cellular function and survival. Here, we evaluated whether the spike protein S1 of SARS-CoV-2 could impact the activity of Cx43 hemichannels.
- ItemSARS-CoV-2 spike protein S1 activates Cx43 hemichannels and disturbs intracellular Ca2+ dynamics(2023) Prieto Villalobos, Juan Carlos; Lucero, Claudia M.; Rovegno, Maximiliano; Gómez, Gonzalo I.; Retamal, Mauricio A.; Orellana, Juan A.Background: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes the ongoing coronavirus disease 2019 (COVID-19). An aspect of high uncertainty is whether the SARS-CoV-2 per se or the systemic inflammation induced by viral infection directly affects cellular function and survival in different tissues. It has been postulated that tissue dysfunction and damage observed in COVID-19 patients may rely on the direct effects of SARS-CoV-2 viral proteins. Previous evidence indicates that the human immunodeficiency virus and its envelope protein gp120 increase the activity of connexin 43 (Cx43) hemichannels with negative repercussions for cellular function and survival. Here, we evaluated whether the spike protein S1 of SARS-CoV-2 could impact the activity of Cx43 hemichannels. Results: We found that spike S1 time and dose-dependently increased the activity of Cx43 hemichannels in HeLa-Cx43 cells, as measured by dye uptake experiments. These responses were potentiated when the angiotensin-converting enzyme 2 (ACE2) was expressed in HeLa-Cx43 cells. Patch clamp experiments revealed that spike S1 increased unitary current events with conductances compatible with Cx43 hemichannels. In addition, Cx43 hemichannel opening evoked by spike S1 triggered the release of ATP and increased the [Ca2+]i dynamics elicited by ATP. Conclusions: We hypothesize that Cx43 hemichannels could represent potential pharmacological targets for developing therapies to counteract SARS-CoV-2 infection and their long-term consequences.