Browsing by Author "Riveros, Ana L."
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- ItemIn vivo micro computed tomography detection and decrease in amyloid load by using multifunctionalized gold nanorods: a neurotheranostic platform for Alzheimer's disease(Royal Soc Chemistry, 2021) Morales Zavala, Francisco; Jara Guajardo, Pedro; Chamorro Veloso, David Daniel; Riveros, Ana L.; Chandia Cristi, América Valeska; Salgado Cortés, Nicole Andrea; Pismante, Paola; Giralt, Ernest; Sanchez Navarro, Macarena; Araya, Eyleen; Vasquez, Rodrigo; Acosta, Gerardo; Albericio, Fernando; Alvarez, Alejandra R.; Kogan, Marcelo J.The development and use of nanosystems is an emerging strategy for the diagnosis and treatment of a broad number of diseases, such as Alzheimer's disease (AD). Here, we developed a neurotheranostic nanosystem based on gold nanorods (GNRs) that works as a therapeutic peptide delivery system and can be detected in vivo for microcomputed tomography (micro-CT), being a diagnostic tool. GNRs functionalized with the peptides Ang2 (a shuttle to the Central Nervous System) and D1 (that binds to the A beta peptide, also inhibiting its aggregation) allowed detecting differences in vivo between wild type and AD mice (APPswe/PSEN1dE9) 15 minutes after a single dose by micro-CT. Moreover, after a recurrent treatment for one month with GNRs-D1/Ang2, we observed a diminution of amyloid load and inflammatory markers in the brain. Thus, this new designed nanosystem exhibits promising properties for neurotheranostics of AD.
- ItemLight-induced release of the cardioprotective peptide angiotensin-(1-9) from thermosensitive liposomes with gold nanoclusters(2020) Bejarano, Julian; Rojas, Aldo; Ramirez Sagredo, Andrea; Riveros, Ana L.; Morales Zavala, Francisco; Flores, Yvo; Riquelme, Jaime A.; Guzman, Fanny; Araya, Eyleen; Chiong, Mario; Ocaranza, María Paz; Morales, Javier O.; Villamizar Sarmiento, Maria Gabriela; Sanchez, Gina; Lavandero, Sergio; Kogan, Marcelo J.Angiotensin-(1-9), a component of the non-canonical renin-angiotensin system, has a short half-life in blood. This peptide has shown to prevent and/or attenuate hypertension and cardiovascular remodeling. A controlled release of angiotensin-(1-9) is needed for its delivery to the heart. Our aim was to develop a drug delivery system for angiotensin-(1-9). Thermosensitive liposomes (LipoTherm) were prepared with gold nanoclusters (LipoThermAuNC) to increase the stability and reach a temporal and spatial control of angiotensin-(1-9) release. Encapsulation efficiencies of nearly 50% were achieved in LipoTherm, reaching a total angiotensin-(1-9) loading of around 180 mu M. This angiotensin-(1-9)-loaded LipoTherm sized around 100 nm and exhibited a phase transition temperature of 43.C. AuNC were grown on LipoTherm and the new hybrid nanosystem showed energy absorption in the near-infrared (NIR) wavelength range. By NIR laser irradiation, a controlled release of angiotensin-(1-9) was achieved from the LipoTherm-AuNC nanosystem. These nanosystems did not show any cytotoxic effect on cultured cardiomyocytes. Biological activity of angiotensin-(1-9) released from the LipoTherm-AuNCbased nanosystem was confirmed using an ex vivo Langendorff heart model.
- ItemThe Cervical and Meningeal Lymphatic Network as a Pathway for Retrograde Nanoparticle Transport to the Brain(2024) Ramos-Zaldivar, Hector; Polakovicova, Iva; Salas-Huenuleo, Edison; Yefi, Claudia P.; Silva-Ancahuail, David; Jara-Guajardo, Pedro; Oyarzun, Juan Esteban; Neira-Troncoso, Alvaro; Burgos, Patricia, V; Cavieres, Viviana A.; Arias-Munoz, Eloisa; Martinez, Carlos; Riveros, Ana L.; Corvalan, Alejandro H.; Kogan, Marcelo J.; Andia, Marcelo E.Introduction: The meningeal lymphatic vessels have been described as a pathway that transports cerebrospinal fluid and interstitial fluid in a unidirectional manner towards the deep cervical lymph nodes. However, these vessels exhibit anatomical and molecular characteristics typical of initial lymphatic vessels, with the absence of surrounding smooth muscle and few or absent valves. Given its structure, this network could theoretically allow for bidirectional motion. Nevertheless, it has not been assessed as a potential route for nanoparticles to travel from peripheral tissues to the brain. Methods: We employed superparamagnetic iron oxide nanoparticles (SPIONs), exosomes loaded with SPIONs, gold nanorods, and Chinese ink nanoparticles. SPIONs were prepared via chemical coprecipitation, while exosomes were isolated from the B16F10 melanoma cell line through the Exo-Spin column protocol and loaded with SPIONs through electroporation. Gold nanorods were functionalized with polyethylene glycol. We utilized C57BL/6 mice for post-mortem and in vivo procedures. To evaluate the retrograde directional flow, we injected each nanoparticle solution in the deep cervical lymph node. The head and neck were fixed for magnetic resonance imaging and histological analysis. Results: Here we show that extracellular vesicles derived from the B16F10 melanoma cell line, along with superparamagnetic iron oxide nanoparticles, gold nanorods, and Chinese ink nanoparticles can reach the meningeal lymphatic vessels and the brain of C57BL/6 mice after administration within the deep cervical lymph nodes post-mortem and in vivo, exclusively through lymphatic structures. Discussion: The functional anatomy of dural lymphatics has been found to be conserved between mice and humans, suggesting that our findings may have significant implications for advancing targeted drug delivery systems using nanoparticles. Understanding the retrograde transport of nanoparticles through the meningeal lymphatic network could lead to novel therapeutic approaches in nanomedicine, offering new insights into fluid dynamics in both physiological and neuropathological contexts. Further research into this pathway may unlock new strategies for treating neurological diseases or enhancing drug delivery to the brain.