Browsing by Author "Quatrini, Raquel"
Now showing 1 - 6 of 6
Results Per Page
Sort Options
- ItemGlobal phylogenomic novelty of the Cas1 gene from hot spring microbial communities(2022) Salgado Salgado, Oscar; Guajardo-Leiva, Sergio; Moya-Beltrán, Ana; Barbosa, Carla; Ridley, Christina; Tamayo-Leiva, Javier; Quatrini, Raquel; Mojica, Francisco; Díez, BeatrizThe Cas1 protein is essential for the functioning of CRISPR-Cas adaptive systems. However, despite the high prevalence of CRISPR-Cas systems in thermophilic microorganisms, few studies have investigated the occurrence and diversity of Cas1 across hot spring microbial communities. Phylogenomic analysis of 2,150 Cas1 sequences recovered from 48 metagenomes representing hot springs (42–80°C, pH 6–9) from three continents, revealed similar ecological diversity of Cas1 and 16S rRNA associated with geographic location. Furthermore, phylogenetic analysis of the Cas1 sequences exposed a broad taxonomic distribution in thermophilic bacteria, with new clades of Cas1 homologs branching at the root of the tree or at the root of known clades harboring reference Cas1 types. Additionally, a new family of casposases was identified from hot springs, which further completes the evolutionary landscape of the Cas1 superfamily. This ecological study contributes new Cas1 sequences from known and novel locations worldwide, mainly focusing on under-sampled hot spring microbial mat taxa. Results herein show that circumneutral hot springs are environments harboring high diversity and novelty related to adaptive immunity systems.
- ItemAcidithiobacillia class members originating at sites within the Pacific Ring of Fire and other tectonically active locations and description of the novel genus 'Igneacidithiobacillus'(2024) Arisan, Dilanaz; Moya-Beltran, Ana; Rojas-Villalobos, Camila; Issotta, Francisco; Castro, Matias; Ulloa, Ricardo; Chiacchiarini, Patricia A.; Diez, Beatriz; Martin, Alberto J. M.; Nancucheo, Ivan; Giaveno, Alejandra; Johnson, D. Barrie; Quatrini, RaquelRecent studies have expanded the genomic contours of the Acidithiobacillia, highlighting important lacunae in our comprehension of the phylogenetic space occupied by certain lineages of the class. One such lineage is 'Igneacidithiobacillus', a novel genus-level taxon, represented by 'Igneacidithiobacillus copahuensis' VAN18-1(T) as its type species, along with two other uncultivated metagenome-assembled genomes (MAGs) originating from geothermally active sites across the Pacific Ring of Fire. In this study, we investigate the genetic and genomic diversity, and the distribution patterns of several uncharacterized Acidithiobacillia class strains and sequence clones, which are ascribed to the same 16S rRNA gene sequence clade. By digging deeper into this data and contributing to novel MAGs emerging from environmental studies in tectonically active locations, the description of this novel genus has been consolidated. Using state-of-the-art genomic taxonomy methods, we added to already recognized taxa, an additional four novel Candidate (Ca.) species, including 'Ca. Igneacidithiobacillus chanchocoensis' (mCHCt20-1(TS)), 'Igneacidithiobacillus siniensis' (S30A2(T)), 'Ca. Igneacidithiobacillus taupoensis' (TVZ-G3 (TS)), and 'Ca. Igneacidithiobacillus waiarikiensis' (TVZ-G4 (TS)). Analysis of published data on the isolation, enrichment, cultivation, and preliminary microbiological characterization of several of these unassigned or misassigned strains, along with the type species of the genus, plus the recoverable environmental data from metagenomic studies, allowed us to identify habitat preferences of these taxa. Commonalities and lineage-specific adaptations of the seven species of the genus were derived from pangenome analysis and comparative genomic metabolic reconstruction. The findings emerging from this study lay the groundwork for further research on the ecology, evolution, and biotechnological potential of the novel genus 'Igneacidithiobacillus'.
- ItemInsights into the biology of acidophilic members of the Acidiferrobacteraceae family derived from comparative genomic analyses(2018) Issotta, Francisco; Moya-Beltran, Ana; Mena, Cristobal; Covarrubias, Paulo C.; Thyssen, Christian; Bellenberg, Sören; Sand, Wolfgang; Quatrini, Raquel; Vera Véliz, Mario Andrés
- ItemMembrane vesicles in Acidithiobacillia class extreme acidophiles: influence on collective behaviors of 'Fervidacidithiobacillus caldus'(2024) Rossoni, Stefano; Beard, Simon; Segura-Bidermann, Maria Ignacia; Duarte-Ramirez, Juan; Osorio, Francisco Kirhman; Varas-Godoy, Manuel; Martinez-Bellange, Patricio; Vera, Mario; Quatrini, Raquel; Castro, MatiasMembrane vesicles (MVs) are envelope-derived extracellular sacs that perform a broad diversity of physiological functions in bacteria. While considerably studied in pathogenic microorganisms, the roles, relevance, and biotechnological potential of MVs from environmental bacteria are less well established. Acidithiobacillaceae family bacteria are active players in the sulfur and iron biogeochemical cycles in extremely acidic environments and drivers of the leaching of mineral ores contributing to acid rock/mine drainage (ARD/AMD) and industrial bioleaching. One key aspect of such a role is the ability of these bacteria to tightly interact with the mineral surfaces and extract electrons and nutrients to support their chemolithotrophic metabolism. Despite recent advances in the characterization of acidithiobacilli biofilms and extracellular matrix (ECM) components, our understanding of its architectural and mechanistic aspects remains scant. Using different microscopy techniques and nano-tracking analysis we show that vesiculation is a common phenomenon in distant members of the Acidithiobacillaceae family, and further explore the role of MVs in multicellular colonization behaviors using 'Fervidacidithiobacillus caldus' as a bacterial model. Production of MVs in 'F. caldus' occurred in both planktonic cultures and biofilms formed on sulfur surfaces, where MVs appeared individually or in chains resembling tube-shaped membranous structures (TSMSs) important for microbial communication. Liquid chromatography-mass spectrometry data and bioinformatic analysis of the MV-associated proteome revealed that 'F. caldus' MVs were enriched in proteins involved in cell-cell and cell-surface processes and largely typified the MVs as outer MVs (OMVs). Finally, microbiological assays showed that amendment of 'F. caldus' MVs to cells and/or biofilms affects collective colonizing behaviors relevant to the ecophysiology and applications of these acidophiles, providing grounds for their exploitation in biomining.
- ItemNutrient structure dynamics and microbial communities at the water-sediment interface in an extremely acidic lake in northern Patagonia(2024) Cuevas, Mayra; Francisco, Issotta; Diaz-Gonzalez, Fernando; Diaz, Monica; Quatrini, Raquel; Beamud, Guadalupe; Pedrozo, Fernando; Temporetti, PedroLake Caviahue (37 degrees 50 'S and 71 degrees 06' W; Patagonia, Argentina) is an extreme case of a glacial, naturally acidic, aquatic environment (pH similar to 3). Knowledge of the bacterial communities in the water column of this lake, is incipient, with a basal quantification of the bacterioplankton abundance distribution in the North and South Basins of Lake Caviahue, and the described the presence of sulfur and iron oxidizing bacteria in the lake sediments. The role that bacterioplankton plays in nutrient utilization and recycling in this environment, especially in the phosphorus cycle, has not been studied. In this work, we explore this aspect in further depth by assessing the diversity of pelagic, littoral and sediment bacteria, using state of the art molecular methods and identifying the differences and commonalties in the composition of the cognate communities. Also, we investigate the interactions between the sediments of Lake Caviahue and the microbial communities present in both sediments, pore water and the water column, to comprehend the ecological relationships driving nutrient structure and fluxes, with a special focus on carbon, nitrogen, and phosphorus. Two major environmental patterns were observed: (a) one distinguishing the surface water samples due to temperature, Fe2+, and electrical conductivity, and (b) another distinguishing winter and summer samples due to the high pH and increasing concentrations of N-NH4+, DOC and SO42-, from autumn and spring samples with high soluble reactive phosphorus (SRP) and iron concentrations. The largest bacterial abundance was found in autumn, alongside higher levels of dissolved phosphorus, iron forms, and increased conductivity. The highest values of bacterial biomass were found in the bottom strata of the lake, which is also where the greatest diversity in microbial communities was found. The experiments using continuous flow column microcosms showed that microbial growth over time, in both the test and control columns, was accompanied by a decrease in the concentration of dissolved nutrients (SRP and N-NH4+), providing proof that sediment microorganisms are active and contribute significantly to nutrient utilization/mobilization.
- ItemThe phylogeny of Acetobacteraceae: photosynthetic traits and deranged respiratory enzymes(2023) Degli Esposti, Mauro; Guerrero, Gabriela; Rogel, Marco A.; Issotta, Francisco; Rojas-Villalobos, Camila; Quatrini, Raquel; Martinez-Romero, EsperanzaWe present here a comprehensive phylogenomic analysis of Acetobacteraceae, a vast group of alphaproteobacteria that has been widely studied for their economic importance. Our results indicate that the ancestor of Acetobacteraceae most likely was photosynthetic and evolved via a progressive transition from versatile photoferrotrophy to the incomplete oxidation of organic substrates defining acetous physiology. Vestigial signs of photosynthetic carotenoid metabolism are present in non-photosynthetic acetous taxa that have lost cytochrome oxidase, while their sister taxa retain such traits. The dominant terminal oxidase of acetous bacteria, the bo(3) ubiquinol oxidase, is derived from duplication and diversification of operons present in Acidocella taxa that have lost photosynthesis. We analyzed the bioenergetic traits that can compensate for the electron transfer function of photosynthetic reaction centers or constitute alternative pathways for the oxidoreduction of c-type cytochromes, such as iron oxidation. The latter pathway bypasses the deranged cytochrome bc(1) complex that is characteristically present in acidophilic taxa due to the loss of conserved ligands in both the Rieske iron-sulfur protein and cytochrome b subunit. The deranged or non-functional bc(1) complex may be retained for its structural role in stabilizing Complex I. The combination of our phylogenetic analysis with in-depth functional evaluations indicates that the order Acetobacterales needs to be emended to include three families: Acetobacteraceae sensu stricto, Roseomonadaceae fam. nov., and Acidocellaceae fam. nov.