Browsing by Author "Otero, Carolina"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
- ItemCirculating Endothelial Cells From Septic Shock Patients Convert to Fibroblasts Are Associated With the Resuscitation Fluid Dose and Are Biomarkers for Survival Prediction.(2019) Tapia, Pablo; Gatica, Sebastian; Cortés-Rivera, Cristian; Otero, Carolina; Becerra, Álvaro; Riedel, Claudia A.; Cabello-Verrugio, Claudio; Kalergis, Alexis M.; Simon, FelipeOBJECTIVES:To determine whether circulating endothelial cells from septic shock patients and from nonseptic shock patients are transformed in activated fibroblast by changing the expression level of endothelial and fibrotic proteins, whether the level of the protein expression change is associated with the amount of administered resuscitation fluid, and whether this circulating endothelial cell protein expression change is a biomarker to predict sepsis survival. DESIGN:Prospective study. SETTING:Medical-surgical ICUs in a tertiary care hospital. PATIENTS:Forty-three patients admitted in ICU and 22 healthy volunteers. INTERVENTIONS:None. MEASUREMENTS AND MAIN RESULTS:Circulating mature endothelial cells and circulating endothelial progenitor cells from septic shock and nonseptic shock patients showed evidence of endothelial fibrosis by changing the endothelial protein expression pattern. The endothelial proteins were downregulated, whereas fibroblast-specific markers were increased. The magnitude of the expression change in endothelial and fibrotic proteins was higher in the septic shock nonsurvivors patients but not in nonseptic shock. Interestingly, the decrease in the endothelial protein expression was correlated with the administered resuscitation fluid better than the Acute Physiology and Chronic Health Evaluation II and Sequential Organ Failure Assessment scores in the septic shock nonsurvivors patients but not in nonseptic shock. Notably, the significant difference between endothelial and fibrotic protein expression indicated a nonsurvival outcome in septic shock but not in nonseptic shock patients. Remarkably, area under the receiver operating characteristic curve analysis showed that endothelial protein expression levels predicted the survival outcome better than the Acute Physiology and Chronic Health Evaluation II and Sequential Organ Failure Assessment scores in septic shock but not in nonseptic shock patients. CONCLUSIONS:Circulating endothelial cells from septic shock patients are acutely converted into fibroblasts. Endothelial and fibrotic protein expression level are associated with resuscitation fluid administration magnitude and can be used as biomarkers for an early survival diagnosis of sepsis.
- ItemNew Properties of a Bioinspired Pyridine Benzimidazole Compound as a Novel Differential Staining Agent for Endoplasmic Reticulum and Golgi Apparatus in Fluorescence Live Cell Imaging(2018) Llancalahuen, Felipe M.; Fuentes, Juan A.; Carreño, Alexander; Zúñiga, César; Páez-Hernández, Dayán; Gacitúa Santelices, Manuel Alejandro; Polanco, Rubén; Preite, Marcelo Daniel; Arratia-Perez, Ramiro; Otero, Carolina
- ItemPhosphatidic Acid Induces Ligand-independent Epidermal Growth Factor Receptor Endocytic Traffic through PDE4 Activation(AMER SOC CELL BIOLOGY, 2010) Norambuena, Andres; Metz, Claudia; Jung, Juan E.; Silva, Antonia; Otero, Carolina; Cancino, Jorge; Retamal, Claudio; Valenzuela, Juan C.; Soza, Andrea; Gonzalez, AlfonsoEndocytosis modulates EGFR function by compartmentalizing and attenuating or enhancing its ligand-induced signaling. Here we show that it can also control the cell surface versus intracellular distribution of empty/inactive EGFR. Our previous observation that PKA inhibitors induce EGFR internalization prompted us to test phosphatidic acid (PA) generated by phospholipase D (PLD) as an endogenous down-regulator of PKA activity, which activates rolipram-sensitive type 4 phosphodiesterases (PDE4) that degrade cAMP. We found that inhibition of PA hydrolysis by propranolol, in the absence of ligand, provokes internalization of inactive (neither tyrosine-phosphorylated nor ubiquitinated) EGFR, accompanied by a transient increase in PA levels and PDE4s activity. This EGFR internalization is mimicked by PA micelles and is strongly counteracted by PLD2 silencing, rolipram or forskolin treatment, and PKA overexpression. Accelerated EGFR endocytosis seems to be mediated by clathrin-dependent and -independent pathways, leading to receptor accumulation in juxtanuclear recycling endosomes, also due to a decreased recycling. Internalized EGFR can remain intracellular without degradation for several hours or return rapidly to the cell surface upon discontinuation of the stimulus. This novel regulatory mechanism of EGFR, also novel function of signaling PA, can transmodulate receptor accessibility in response to heterologous stimuli.
- ItemTheoretical and experimental characterization of a novel pyridine benzimidazole : suitability for fluorescence staining in cells and antimicrobial properties(2016) Carreño, Alexander; Gacitúa Santelices, Manuel Alejandro; Fuentes, Juan A.; Páez Hernández, Dayán; Araneda, Carmen; Chávez Madariaga, Ivonne; Soto Arriaza, Marco; Manríquez M., Juan Manuel; Polanco, Rubén; Mora, Guido C.; Otero, Carolina; Swordsk, Wesley B.; Arratia Pérez, Ramiro