Browsing by Author "Neyem, Andrés"
Now showing 1 - 20 of 22
Results Per Page
Sort Options
- ItemA Cloud-based Mobile System for Improving Vital Signs Monitoring During Hospital Transfers(2015) Neyem, Andrés; Valenzuela, Guillermo; Risso, Nicolas; Rojas Riethmuller, Juan S.; Benedetto Causa, José Ignacio; Carrillo, Marie J.
- ItemA Cloud-Based Mobile System to Improve Project Management Skills in Software Engineering Capstone Courses(2018) Neyem, Andrés; Diaz-Mosquera, Juan; Benedetto Causa, José Ignacio
- ItemA cloud-based mobile system to improve respiratory therapy services at home(2016) Risso, N.; Benedetto, J.; Carrillo, M.; Farias, A.; Gajardo, M.; Loyola, O.; Neyem, Andrés
- ItemA Cloud-based Mobile System to Manage Lessons-learned in Construction Projects(2016) Ferrada Calvo, Ximena Verónica; Nuñez, Daniela; Neyem, Andrés; Serpell, Alfredo; Sepúlveda Fernández, Marcos Ernesto
- ItemA cloud-based mobile system to support effective collaboration in higher education online courses(2017) Rojas Riethmüller, Juan Sebastián; Neyem, Andrés; Pontificia Universidad Católica de Chile. Escuela de IngenieríaActualmente existen más de cuatro mil cursos MOOC ofrecidos mediante distintas Plataformas MOOC. Estas plataformas son robustas y soportan grandes volúmenes de datos y un alto número de usuarios. Debido a estas características, las instituciones de educación superior han adoptado estas plataformas para extender las prácticas del aula tradicional. La forma más común en que adoptan estas Plataformas MOOC, consiste en desarrollar cursos online exclusivamente para sus estudiantes. Estos cursos reciben el nombre de Small Private Online Courses (SPOCs), y solo pueden ser accedidos por un número reducido de estudiantes de dicha institución. El uso de las Plataformas MOOC permite a las universidades innovar y tener más flexibilidad en sus currículos. Sin embargo, estas plataformas no están preparadas para promover el aprendizaje colaborativo entre los estudiantes, ya que no cuentan con las herramientas necesarias. Respecto a este problema, Mobile Cloud Computing (MCC) ofrece varias ventajas para diseñar un sistema que promueva la colaboración entre estudiantes de educación superior, pero estas ventajas no han sido aprovechadas. Entonces, esta investigación se enfoca en el desarrollo de un sistema basado en MCC para promover la colaboración entre estudiantes en una Plataforma MOOC, en el contexto de la educación superior. Se siguió una metodología de Design Based Research para recopilar información, y producir y testear prototipos funcionales de manera iterativa e incremental. El sistema resultante es MyMOOCSpace, un sistema MCC que incluye dinámicas de colaboración enriquecidas con elementos de gamificación. Se realizaron evaluaciones para medir la usabilidad y el efecto en la colaboración de MyMOOCSpace. Los resultados de usabilidad muestran que los estudiantes se sintieron a gusto interactuando con el sistema, que logra también cumplir los requerimientos técnicos. Finalmente, los resultados muestran que MyMOOCSpace logró generar un aumento en la colaboración y las interacciones entre los estudiantes.
- ItemA Lessons-learned System for Construction Project Management: A Preliminary Application(2016) Ferrada Calvo, Ximena Verónica; Nuñez, D.; Neyem, Andrés; Serpell, A.; Sepúlveda Fernández, Marcos Ernesto
- ItemA Mobile Cloud Shared Workspace to Support Homecare for Respiratory Diseases in Chile(2015) Neyem, Andrés; Risso, Nicolas A.; Carrillo, Marie J.; Farías Cancino, Angélica; Gajardo, Macarena J.
- ItemAnatomicis network: Una plataforma de software educativa basada en la nube para mejorar la enseñanza de la anatomía en la educación médica(2017) Inzunza, Oscar; Neyem, Andrés; Sanz, María Eliana; Valdivia, Iván; Villarroel, Mauricio; Farfán C., Emilio; Matte, Andrés
- ItemBiomechanical analysis of expert anesthesiologists and novice residents performing a simulated central venous access procedure(2021) Villagrán Gutiérrez, Ignacio Andrés; Moenne Vargas, Cristóbal Matías; Aguilera Siviragol, Victoria Ignacia; Garcia, Vicente; Reyes, Jose Tomas; Rodriguez, Sebastian; Miranda Mendoza, Constanza; Altermatt, Fernando; Fuentes López, Eduardo; Delgado Bravo, Mauricio Antonio; Neyem, AndrésBackground Central venous access (CVA) is a frequent procedure taught in medical residencies. However, since CVA is a high-risk procedure requiring a detailed teaching and learning process to ensure trainee proficiency, it is necessary to determine objective differences between the expert’s and the novice’s performance to guide novice practitioners during their training process. This study compares experts’ and novices’ biomechanical variables during a simulated CVA performance. Methods Seven experts and seven novices were part of this study. The participants’ motion data during a CVA simulation procedure was collected using the Vicon Motion System. The procedure was divided into four stages for analysis, and each hand’s speed, acceleration, and jerk were obtained. Also, the procedural time was analyzed. Descriptive analysis and multilevel linear models with random intercept and interaction were used to analyze group, hand, and stage differences. Results There were statistically significant differences between experts and novices regarding time, speed, acceleration, and jerk during a simulated CVA performance. These differences vary significantly by the procedure stage for right-hand acceleration and left-hand jerk. Conclusions Experts take less time to perform the CVA procedure, which is reflected in higher speed, acceleration, and jerk values. This difference varies according to the procedure’s stage, depending on the hand and variable studied, demonstrating that these variables could play an essential role in differentiating between experts and novices, and could be used when designing training strategies.
- ItemCode Offloading Solutions for Audio Processing in Mobile Healthcare Applications: A Case Study(IEEE, 2018) Sanabria Quispe, Pablo; Benedetto Causa, José Ignacio; Neyem, Andrés; Navón Cohen, Jaime; Poellabauer, C.In this paper, we present a real-life case study of a mobile healthcare application that leverages code offloading techniques to accelerate the execution of a complex deep neural network algorithm for analyzing audio samples. Resource-intensive machine learning tasks take a significant time to complete on high-end devices, while lower-end devices may outright crash when attempting to run them. In our experiments, offloading granted the former a 3.6x performance improvement, and up to 80% reduction in energy consumption; while the latter gained the capability of running a process they originally could not.
- ItemConnection-Aware Heuristics for Scheduling and Distributing Jobs under Dynamic Dew Computing Environments(2024) Sanabria Quispe, Pablo; Montoya Tapia, Sebastián Ignacio; Neyem, Andrés; Toro Icarte, Rodrigo Andrés; Hirsch, Matías; Mateos, CristianDue to the widespread use of mobile and IoT devices, coupled with their continually expanding processing capabilities, dew computing environments have become a significant focus for researchers. These environments enable resource-constrained devices to contribute computing power to a local network. One major challenge within these environments revolves around task scheduling, specifically determining the optimal distribution of jobs across the available devices in the network. This challenge becomes particularly pronounced in dynamic environments where network conditions constantly change. This work proposes integrating the “reliability” concept into cutting-edge human-design job distribution heuristics named ReleSEAS and RelBPA as a means of adapting to dynamic and ever-changing network conditions caused by nodes’ mobility. Additionally, we introduce a reinforcement learning (RL) approach, embedding both the notion of reliability and real-time network status into the RL agent. Our research rigorously contrasts our proposed algorithms’ throughput and job completion rates with their predecessors. Simulated results reveal a marked improvement in overall throughput, with our algorithms potentially boosting the environment’s performance. They also show a significant enhancement in job completion within dynamic environments compared to baseline findings. Moreover, when RL is applied, it surpasses the job completion rate of human-designed heuristics. Our study emphasizes the advantages of embedding inherent network characteristics into job distribution algorithms for dew computing. Such incorporation gives them a profound understanding of the network’s diverse resources. Consequently, this insight enables the algorithms to manage resources more adeptly and effectively.
- ItemEnriching Capstone Project-Based Learning Experiences Using a Crowdsourcing Recommender Engine(IEEE, 2017) Diaz-Mosquera, Juan; Sanabria Quispe, Pablo; Neyem, Andrés; Parra Santander, Denis; Navón Cohen, JaimeCapstone project-based learning courses generate a suitable space where students can put into action knowledge specific to an area. In the case of Software Engineering (SE), students must apply knowledge at the level of Analysis, Design, Development, Implementation and Management of Software Projects. There is a large number of supportive resources for SE that one can find on the web, however, information overload ends up saturating the students who wish to find resources more accurate depending on their needs. This is why we propose a crowdsourcing recommender engine as part of an educational software platform. This engine based its recommendations on content from StackExchange posts using the project's profile in which a student is currently working. To generate the project's profile, our engine takes advantage of the information stored by students in the aforementioned platform. Content-based algorithms based on Okapi BM25 and Latent Dirichlet Allocation (LDA) are used to provide suitable recommendations. The evaluation of the engine was held with students from the capstone course in SE of the University Catholic of Chile. Results show that Cosine similarity over traditional bag-of-words TF-IDF content vectors yield interesting results, but they are outperformed by the integration of BM25 with LDA.
- ItemImproving Healthcare Team Collaboration in Hospital Transfers through Cloud-Based Mobile Systems(2016) Neyem, Andrés; Carrillo, M.; Jerez, C.; Valenzuela, G.; Risso, N.; Benedetto Causa, José Ignacio; Rojas Riethmuller, J.
- ItemLive ANDES: Mobile-Cloud Shared Workspace for Citizen Science and Wildlife Conservation(IEEE, 2015) Bonacic Salas, Cristián; Neyem, Andrés; Vásquez Guerra, Andrea FernandaOne of the weakest points of scientific research is the loss of data. A tiny fraction of the information generated onsite is published or released to public knowledge, and many useful studies end up stored in papers or emails without being utilized. Live ANDES is a mobile-cloud shared workspace designed to address this problem, promoting citizen science, data collection and analysis for wildlife conservation. It works by gathering geo-localized data provided by the scientific community, amateur naturalists, park rangers and people at large through web and mobile applications. Live ANDES offers filters, visualization and download options to work with existing data. Researchers can use this new information to identify species, ranges of distribution, and detect key habitat factors and potential threats to their conservation. Live ANDES is implemented using the Backend as a Service pattern on Microsoft Azure to manage the processing of the large amounts of data generated from sightings. It includes an API for mobile and desktop clients hosted in an Azure Virtual Machine, cloud storage and connection with external services to complement the existing information about recorded sightings. This paper discusses Live ANDES software design, architecture and a study case, in order to demonstrate an actual application of data management in the cloud and its impact on conservation.
- ItemMedicine-Hub: A New Teaching Tool for the Study of Sectional Anatomy(Lancaster Univeristy, 2023) Montt Blanchard, Denise; Inzunza, Oscar; Neyem, Andrés; Caro Pinto, IvánMedicine-Hub is a platform that integrates analogue and digital components, specially designed for the visualization of -and interaction with- high-fidelity anatomical structures matching the reality of a cadaveric preparation. This project presents a solution to the inequality gap generated by the scarcity of cadaveric dissections available for health career students.
- ItemMinimally Invasive tele-mentoring opportunity – the mito project(2019) Quezada González, José Luis; Achurra Tirado, Pablo; Jarry, Cristián; Tejos, Rodrigo; Inzunza, Martín; Ulloa, Gabriel; Neyem, Andrés; Martínez, Carlos; Martino, Carlo; Escalona, Gabriel
- ItemMobiCOP : A Scalable and Reliable Mobile Code Offloading Solution(2018) Benedetto Causa, José Ignacio; Valenzuela, Guillermo; Sanabria Quispe, Pablo; Neyem, Andrés; Navón Cohen, Jaime; Poellabauer, Christian
- ItemMyMOOCSpace : Mobile cloud-based system tool to improve collaboration and preparation of group assessments in traditional engineering courses in higher education(2018) Ramírez Donoso, Luis Alejandro; Pérez Sanagustín, Mar; Neyem, Andrés
- ItemMyMOOCSpace: A Cloud-Based Mobile System to Support Effective Collaboration in Higher Education Online Courses,(2017) Ramirez, L.; Rojas, J.; Pérez Sanagustín, Mar; Neyem, Andrés; Alario, C.
- ItemPlataforma Móvil Basada en la Nube para Mejorar la Experiencia de Aprendizaje en la Anatomía Humana(2021) Rojos, Felipe; Stambuk, Mónica; Neyem, Andrés; Farfán C., Emilio; Inzunza, OscarEn la actualidad, los cursos en línea han masificado y modificado la forma en que se enseña. Tanto los MOOC como los SPOC presentan soluciones sólidas para enseñar, e incluso poseen herramientas para fomentar la colaboración. A pesar de esto, las herramientas que poseen no fomentan colaboración efectiva y tampoco tienen una forma de medirla. Por otro lado, en anatomía han surgido múltiples aplicaciones debido a las dificultades de acceso a material cadavérico, sin embargo, éstas carecen de colaboración y no entregan información enriquecida del comportamiento y aprendizaje de los estudiantes. Dado esto, presentamos una plataforma móvil basada en la nube, como estrategia de herramienta educacional, que busca fomentar la colaboración en la enseñanza para estudiantes de anatomía y entregar datos que permiten analizar y mejorar la experiencia de aprendizaje. Esta solución se desarrolló usando como eje central las metodologías ágiles de desarrollo. Para el experimento, 29 voluntarios formaron parte del grupo experimental y otros 99 del grupo de control. Se realizaron 2 pruebas para medir sus conocimientos en áreas específicas de la anatomía. Se obtuvo aumentos de 0,59 % y 2,98 % en el puntaje de las pruebas, además, hubo una disminución en la desviación estándar de 11,434 a 5,216 en la primera prueba, y de 6,623 a 3,514 en la segunda prueba, mostrando mejora en ambos casos para el grupo experimental. Los resultados obtenidos muestran un potencial de mejorar la experiencia de aprendizaje al usar este tipo de herramientas educativas.