• La Universidad
    • Historia
    • Rectoría
    • Autoridades
    • Secretaría General
    • Pastoral UC
    • Organización
    • Hechos y cifras
    • Noticias UC
  • 2011-03-15-13-28-09
  • Facultades
    • Agronomía e Ingeniería Forestal
    • Arquitectura, Diseño y Estudios Urbanos
    • Artes
    • Ciencias Biológicas
    • Ciencias Económicas y Administrativas
    • Ciencias Sociales
    • College
    • Comunicaciones
    • Derecho
    • Educación
    • Filosofía
    • Física
    • Historia, Geografía y Ciencia Política
    • Ingeniería
    • Letras
    • Matemáticas
    • Medicina
    • Química
    • Teología
    • Sede regional Villarrica
  • 2011-03-15-13-28-09
  • Organizaciones vinculadas
  • 2011-03-15-13-28-09
  • Bibliotecas
  • 2011-03-15-13-28-09
  • Mi Portal UC
  • 2011-03-15-13-28-09
  • Correo UC
- Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log in
    Log in
    Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of DSpace
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log in
    Log in
    Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Mena, Ramses H."

Now showing 1 - 3 of 3
Results Per Page
Sort Options
  • No Thumbnail Available
    Item
    Linear models for statistical shape analysis based on parametrized closed curves
    (2020) Gutierrez, Luis; Mena, Ramses H.; Diaz-Avalos, Carlos
    We develop a simple, yet powerful, technique based on linear regression models of parametrized closed curves which induces a probability distribution on the planar shape space. Such parametrization is driven by control points which can be estimated from the data. Our proposal is capable to infer about the mean shape, to predict the shape of an object at an unobserved location, and, while doing so, to consider the effect of predictors on the shape. In particular, the model is able to detect possible differences across the levels of the predictor, thus also applicable for two-sample tests. A simple MCMC algorithm for Bayesian inference is also presented and tested with simulated and real datasets. Supplementary material is available online.
  • No Thumbnail Available
    Item
    Modeling wildfires via marked spatio-temporal Poisson processes
    (2021) Quinlan, Jose J.; Diaz-Avalos, Carlos; Mena, Ramses H.
    From a statistical viewpoint, characteristics such as ignition time, location and duration are relevant components for wildfire modeling. The observed ignition sites and starting times constitute a space-time point pattern, and a natural framework to model this type of data is via point processes. In this work, we propose a marked Poisson process to model fire patterns in space-time, considering durations as marks. The collected data correspond to fires observed in the Valencian Community, Spain, between 2010 and 2015. The methodology relies on writing the intensity function of such a process, jointly for starting times, locations and durations, as a weighted Dirichlet process mixture model. A particular choice of the kernel that determines such mixture was made, compatible with data features. We conducted posterior inference on some characteristics of interest for understanding wildfire behavior, showing high flexibility to emulate data patterns.
  • No Thumbnail Available
    Item
    On a Dirichlet Process Mixture Representation of Phase-Type Distributions
    (2022) Ayala, Daniel; Jofre, Leonardo; Gutierrez, Luis; Mena, Ramses H.
    An explicit representation of phase-type distributions as an infinite mixture of Erlang distributions is introduced. The representation unveils a novel and useful connection between a class of Bayesian nonparametric mixture mod-els and phase-type distributions. In particular, this sheds some light on two hot topics, estimation techniques for phase-type distributions, and the availability of closed-form expressions for some functionals related to Dirichlet process mixture models. The power of this connection is illustrated via a posterior inference al-gorithm to estimate phase-type distributions, avoiding some difficulties with the simulation of latent Markov jump processes, commonly encountered in phase-type Bayesian inference. On the other hand, closed-form expressions for functionals of Dirichlet process mixture models are illustrated with density and renewal function estimation, related to the optimal salmon weight distribution of an aquaculture study.

Bibliotecas - Pontificia Universidad Católica de Chile- Dirección oficinas centrales: Av. Vicuña Mackenna 4860. Santiago de Chile.

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback