Browsing by Author "Marsac, Delphine"
Now showing 1 - 5 of 5
Results Per Page
Sort Options
- ItemAnalysis of natural variants of the hepatitis C virus internal ribosome entry site reveals that primary sequence plays a key role in cap-independent translation(OXFORD UNIV PRESS, 2009) Ines Barria, Maria; Gonzalez, Angel; Vera Otarola, Jorge; Leon, Ursula; Vollrath, Valeska; Marsac, Delphine; Monasterio, Octavio; Perez Acle, Tomas; Soza, Alejandro; Lopez Lastra, MarceloThe HCV internal ribosome entry site (IRES) spans a region of similar to 340 nt that encompasses most of the 5' untranslated region (5'UTR) of the viral mRNA and the first 24-40 nt of the core-coding region. To investigate the implication of altering the primary sequence of the 5'UTR on IRES activity, naturally occurring variants of the 5'UTR were isolated from clinical samples and analyzed. The impact of the identified mutations on translation was evaluated in the context of RLuc/FLuc bicistronic RNAs. Results show that depending on their location within the RNA structure, these naturally occurring mutations cause a range of effects on IRES activity. However, mutations within subdomain IIId hinder HCV IRES-mediated translation. In an attempt to explain these data, the dynamic behavior of the subdomain IIId was analyzed by means of molecular dynamics (MD) simulations. Despite the loss of function, MD simulations predicted that mutant G266A/G268U possesses a structure similar to the wt-RNA. This prediction was validated by analyzing the secondary structure of the isolated IIId RNAs by circular dichroism spectroscopy in the presence or absence of Mg2+ ions. These data strongly suggest that the primary sequence of subdomain IIId plays a key role in HCV IRES-mediated translation.
- ItemAndes Virus Antigens Are Shed in Urine of Patients with Acute Hantavirus Cardiopulmonary Syndrome(AMER SOC MICROBIOLOGY, 2009) Godoy, Paula; Marsac, Delphine; Stefas, Elias; Ferrer, Pablo; Tischler, Nicole D.; Pino, Karla; Ramdohr, Pablo; Vial, Pablo; Valenzuela, Pablo D. T.; Ferres, Marcela; Veas, Francisco; Lopez Lastra, MarceloHantavirus cardiopulmonary syndrome (HCPS) is a highly pathogenic emerging disease (40% case fatality rate) caused by New World hantaviruses. Hantavirus infections are transmitted to humans mainly by inhalation of virus-contaminated aerosol particles of rodent excreta and secretions. At present, there are no antiviral drugs or immunotherapeutic agents available for the treatment of hantaviral infection, and the survival rates for infected patients hinge largely on early virus recognition and hospital admission and aggressive pulmonary and hemodynamic support. In this study, we show that Andes virus (ANDV) interacts with human apolipoprotein H (ApoH) and that ApoH-coated magnetic beads or ApoH-coated enzyme-linked immunosorbent assay plates can be used to capture and concentrate the virus from complex biological mixtures, such as serum and urine, allowing it to be detected by both immunological and molecular approaches. In addition, we report that ANDV-antigens and infectious virus are shed in urine of HCPS patients.
- ItemExactitud y utilidad diagnóstica de la IgM en infecciones por Bartonella henselae(2013) Abarca Villaseca, Katia; Winter, Matías; Marsac, Delphine; Palma, Carlos; Contreras, Ana M.; Ferrés Garrido, Marcela Viviana
- ItemInfection of human monocyte-derived dendritic cells by ANDES Hantavirus enhances pro-inflammatory state, the secretion of active MMP-9 and indirectly enhances endothelial permeability(2011) Marsac, Delphine; García, Stephanie; Pino, Karla; Ferrés Garrido, Marcela Viviana; López Lastra, Marcelo Andrés; Kalergis Parra, Alexis Mikes; Fournet, Alexandra; Aguirre, Adam; Veas, FranciscoAbstract Background Andes virus (ANDV), a rodent-borne Hantavirus, is the major etiological agent of Hantavirus cardiopulmonary syndrome (HCPS) in South America, which is mainly characterized by a vascular leakage with high rate of fatal outcomes for infected patients. Currently, neither specific therapy nor vaccines are available against this pathogen. ANDV infects both dendritic and epithelial cells, but in despite that the severity of the disease directly correlates with the viral RNA load, considerable evidence suggests that immune mechanisms rather than direct viral cytopathology are responsible for plasma leakage in HCPS. Here, we assessed the possible effect of soluble factors, induced in viral-activated DCs, on endothelial permeability. Activated immune cells, including DC, secrete gelatinolytic matrix metalloproteases (gMMP-2 and -9) that modulate the vascular permeability for their trafficking. Methods A clinical ANDES isolate was used to infect DC derived from primary PBMC. Maturation and pro-inflammatory phenotypes of ANDES-infected DC were assessed by studying the expression of receptors, cytokines and active gMMP-9, as well as some of their functional status. The ANDES-infected DC supernatants were assessed for their capacity to enhance a monolayer endothelial permeability using primary human vascular endothelial cells (HUVEC). Results Here, we show that in vitro primary DCs infected by a clinical isolate of ANDV shed virus RNA and proteins, suggesting a competent viral replication in these cells. Moreover, this infection induces an enhanced expression of soluble pro-inflammatory factors, including TNF-α and the active gMMP-9, as well as a decreased expression of anti-inflammatory cytokines, such as IL-10 and TGF-β. These viral activated cells are less sensitive to apoptosis. Moreover, supernatants from ANDV-infected DCs were able to indirectly enhance the permeability of a monolayer of primary HUVEC. Conclusions Primary human DCs, that are primarily targeted by hantaviruses can productively be infected by ANDV and subsequently induce direct effects favoring a proinflammatory phenotype of infected DCs. Finally, based on our observations, we hypothesize that soluble factors secreted in ANDV-infected DC supernatants, importantly contribute to the endothelial permeability enhancement that characterize the HCPS.
- ItemInfluence of extrahepatic viral infection on the natural history of hepatitis C(ELSEVIER ESPANA, 2008) Ines Barria, Maria; Vera Otarola, Jorge; Leon, Ursula; Vollrath, Valeska; Marsac, Delphine; Riquelme, Arnoldo; Lopez Lastra, Marcelo; Soza, AlejandroHCV is primarily hepatotropic, but there is mounting evidence pointing to infection and replication of extrahepatic sites. Here we evaluated the occurrence of HCV infection of peripheral blood mononuclear cells (PBMC) and explored the possible association between viral extrahepatic infection and the natural history of the disease. Forty seven Chilean, HCV infected, treatment naive patients were included in the study. HCV RNA was isolated from plasma and PBMC and subsequently reverse transcribed, amplified and sequenced. Most patients harbored HCV 1b genotype and the most common route of infection showed to be blood transfusion. HCV RNA was readily detected in PBMCs of 34 out of the 47 patients (72%). We report that HCV sequences found in PBMC differ from those in plasma of the same subjects strongly suggesting HCV compartmentalization. In addition, we found that patients with detectable HCV RNA in PBMC had a tendency for being more likely cirrhotic [OR 3.8 (95 % CI: 0.98 to 14)]. In conclusion, this study provides further arguments for the existence of HCV infection of extrahepatic sites and suggests that extrahepatic infection could be a factor influencing the natural history of the disease.