Browsing by Author "Mannucci, F."
Now showing 1 - 13 of 13
Results Per Page
Sort Options
- ItemBubbles and outflows: The novel JWST/NIRSpec view of the z=1.59 obscured quasar XID2028(2023) Cresci, G.; Tozzi, G.; Perna, M.; Brusa, M.; Marconcini, C.; Marconi, A.; Carniani, S.; Brienza, M.; Giroletti, M.; Belfiore, F.; Ginolfi, M.; Mannucci, F.; Ulivi, L.; Scholtz, J.; Venturi, G.; Arribas, S.; Ubler, H.; D'Eugenio, F.; Mingozzi, M.; Balmaverde, B.; Capetti, A.; Parlanti, E.; Zana, T.Quasar feedback in the form of powerful outflows is invoked as a key mechanism to quench star formation in galaxies, although direct observational evidence is still scarce and debated. Here we present Early Release Science JWST NIRSpec IFU observations of the z = 1.59 prototypical obscured Active Galactic Nucleus (AGN) XID2028: This target represents a unique test case for studying quasar feedback at the peak epoch of AGN-galaxy co-evolution because extensive multi-wavelength coverage is available and a massive and extended outflow is detected in the ionised and molecular components. With the unprecedented sensitivity and spatial resolution of the JWST, the NIRSpec dataset reveals a wealth of structures in the ionised gas kinematics and morphology that were previously hidden in the seeing-limited ground-based data. In particular, we find evidence of an interaction between the interstellar medium of the galaxy and the quasar-driven outflow and radio jet that produces an expanding bubble from which the fast and extended wind detected in previous observations emerges. The new observations confirm the complex interplay between the AGN jet, wind and the interstellar medium of the host galaxy, highlighting the role of low-luminosity radio jets in AGN feedback. They also clearly show the new window that NIRSpec opens for detailed studies of feedback at high redshift.
- ItemConnecting X-ray nuclear winds with galaxy-scale ionised outflows in two z ∼ 1.5 lensed quasars(2021) Tozzi, G.; Cresci, G.; Marasco, A.; Nardini, E.; Marconi, A.; Mannucci, F.; Chartas, G.; Rizzo, F.; Amiri, A.; Brusa, M.; Comastri, A.; Dadina, M.; Lanzuisi, G.; Mainieri, V.; Mingozzi, M.; Perna, M.; Venturi, G.; Vignali, C.Aims. Outflows driven by active galactic nuclei (AGN) are expected to have a significant impact on host galaxy evolution, but the matter of how they are accelerated and propagated on galaxy-wide scales is still under debate. This work addresses these questions by studying the link between X-ray, nuclear ultra-fast outflows (UFOs), and extended ionised outflows, for the first time, in two quasars close to the peak of AGN activity (z similar to 2), where AGN feedback is expected to be more effective.Methods. Our selected targets, HS 0810+2554 and SDSS J1353+1138, are two multiple-lensed quasars at z similar to 1.5 with UFO detection that have been observed with the near-IR integral field spectrometer SINFONI at the VLT. We performed a kinematical analysis of the [O III]lambda 5007 optical emission line to trace the presence of ionised outflows.Results. We detected spatially resolved ionised outflows in both galaxies, extended more than 8 kpc and moving up to v>2000 km s(-1). We derived mass outflow rates of similar to 12 M-circle dot yr(-1) and similar to 2 M-circle dot yr(-1) for HS 0810+2554 and SDSS J1353+1138.Conclusions. Compared with the co-hosted UFO energetics, the ionised outflow energetics in HS 0810+2554 is broadly consistent with a momentum-driven regime of wind propagation, whereas in SDSS J1353+1138, it differs by about two orders of magnitude from theoretical predictions, requiring either a massive molecular outflow or a high variability of the AGN activity to account for such a discrepancy. By additionally considering our results together with those from the small sample of well-studied objects (all local but one) having both UFO and extended (ionised, atomic, or molecular) outflow detections, we found that in 10 out of 12 galaxies, the large-scale outflow energetics is consistent with the theoretical predictions of either a momentum- or an energy-driven scenario of wind propagation. This suggests that such models explain the acceleration mechanism of AGN-driven winds on large scales relatively well.
- ItemDiscovery of a galaxy overdensity around a powerful, heavily obscured FRII radio galaxy at z=1.7: star formation promoted by large-scale AGN feedback?(2019) Gilli, R.; Mignoli, M.; Peca, A.; Nanni, R.; Prandoni, I.; Liuzzo, E.; D'Amato, Q.; Brusa, M.; Calura, F.; Caminha, G. B.; Chiaberge, M.; Comastri, A.; Cucciati, O.; Cusano, F.; Grandi, P.; Decarli, R.; Lanzuisi, G.; Mannucci, F.; Pinna, E.; Tozzi, P.; Vanzella, E.; Vignali, C.; Vito, F.; Balmaverde, B.; Citro, A.; Cappelluti, N.; Zamorani, G.; Norman, C.We report the discovery of a galaxy overdensity around a Compton-thick Fanaroff-Riley type II (FRII) radio galaxy at z = 1:7 in the deep multiband survey around the z = 6.3 quasi-stellar object (QSO) SDSS J1030 +0524. Based on a 6 h VLT/MUSE and on a 4 h LBT/LUCI observation, we identify at least eight galaxy members in this structure with spectroscopic redshift z = 1 .687 1 .699, including the FRII galaxy at z = 1.699. Most members are distributed within 400 kpc from the FRII core. Nonetheless, the whole structure is likely much more extended, as one of the members was serendipitously found at similar to 800 kpc projected separation. The classic radio structure of the FRII itself extends for similar to 600 kpc across the sky. Most of the identified overdensity members are blue, compact galaxies that are actively forming stars at rates of similar to 8-60 M-circle dot yr(-1). For the brightest of them, a half-light radius of 2 .2 similar to 0 .8 kpc at 8000A rest-frame was determined based on adaptive optics-assisted observations with LBT/SOUL in the Ks band. We do not observe any strong galaxy morphological segregation or concentration around the FRII core. This suggests that the structure is far from being virialized and likely constitutes the progenitor of a local massive galaxy group or cluster caught in its main assembly phase. Based on a 500 ks Chandra ACIS-I observation, we found that the FRII nucleus hosts a luminous QSO (L2-10 keV = 1 .3 similar to 10(44) erg s(-1), intrinsic and rest-frame) that is obscured by Compton-thick absorption (N-H = 1.5 +/- 0 .6 x 10(24) cm(-2)). Under standard bolometric corrections, the total measured radiative power (L-rad similar to 4 x 10(45) erg s(-1)) is similar to the jet kinetic power that we estimated from radio observations at 150MHz (P-kin = 6.3 x 10(45) erg s(-1)), in agreement with what is observed in powerful jetted AGN. Our Chandra observation is the deepest so far for a distant FRII within a galaxy overdensity. It revealed significant di ffuse X-ray emission within the region that is covered by the overdensity. In particular, X-ray emission extending for similar to 240 kpc is found around the eastern lobe of the FRII. Four out of the six MUSE star-forming galaxies in the overdensity are distributed in an arc-like shape at the edge of this di ffuse X-ray emission. These objects are concentrated within 200 kpc in the plane of the sky and within 450 kpc in radial separation. Three of them are even more concentrated and fall within 60 kpc in both transverse and radial distance. The probability of observing four out of the six z = 1.7 sources by chance at the edge of the di ffuse emission is negligible. In addition, these four galaxies have the highest specific star formation rates of the MUSE galaxies in the overdensity and lie above the main sequence of field galaxies of equal stellar mass at z = 1.7. We propose that the di ffuse X-rays originate from an expanding bubble of gas that is shock heated by the FRII jet, and that star formation is promoted by the compression of the cold interstellar medium of the galaxies around the bubble, which may be remarkable evidence of positive AGN feedback on cosmological scales.
- ItemFRIPON: a worldwide network to track incoming meteoroids(2020) Colas, F.; Zanda, B.; Bouley, S.; Jeanne, S.; Malgoyre, A.; Birlan, M.; Blanpain, C.; Gattacceca, J.; Jorda, L.; Lecubin, J.; Marmo, C.; Rault, J. L.; Vaubaillon, J.; Vernazza, P.; Yohia, C.; Gardiol, D.; Nedelcu, A.; Poppe, B.; Rowe, J.; Forcier, M.; Koschny, D.; Trigo-Rodriguez, J. M.; Lamy, H.; Behrend, R.; Ferriere, L.; Barghini, D.; Buzzoni, A.; Carbognani, A.; Di Carlo, M.; Di Martino, M.; Knapic, C.; Londero, E.; Pratesi, G.; Rasetti, S.; Riva, W.; Stirpe, G. M.; Valsecchi, G. B.; Volpicelli, C. A.; Zorba, S.; Coward, D.; Drolshagen, E.; Drolshagen, G.; Hernandez, O.; Jehin, E.; Jobin, M.; King, A.; Nitschelm, C.; Ott, T.; Sanchez-Lavega, A.; Toni, A.; Abraham, P.; Affaticati, F.; Albani, M.; Andreis, A.; Andrieu, T.; Anghel, S.; Antaluca, E.; Antier, K.; Appere, T.; Armand, A.; Ascione, G.; Audureau, Y.; Auxepaules, G.; Avoscan, T.; Baba Aissa, D.; Bacci, P.; Badescu, O.; Baldini, R.; Baldo, R.; Balestrero, A.; Baratoux, D.; Barbotin, E.; Bardy, M.; Basso, S.; Bautista, O.; Bayle, L. D.; Beck, P.; Bellitto, R.; Belluso, R.; Benna, C.; Benammi, M.; Beneteau, E.; Benkhaldoun, Z.; Bergamini, P.; Bernardi, F.; Bertaina, M. E.; Bessin, P.; Betti, L.; Bettonvil, F.; Bihel, D.; Birnbaum, C.; Blagoi, O.; Blouri, E.; Boaca, I.; Boata, R.; Bobiet, B.; Bonino, R.; Boros, K.; Bouchet, E.; Borgeot, V.; Bouchez, E.; Boust, D.; Boudon, V.; Bouman, T.; Bourget, P.; Brandenburg, S.; Bramond, Ph.; Braun, E.; Bussi, A.; Cacault, P.; Caillier, B.; Calegaro, A.; Camargo, J.; Caminade, S.; Campana, A. P. C.; Campbell-Burns, P.; Canal-Domingo, R.; Carell, O.; Carreau, S.; Cascone, E.; Cattaneo, C.; Cauhape, P.; Cavier, P.; Celestin, S.; Cellino, A.; Champenois, M.; Chennaoui Aoudjehane, H.; Chevrier, S.; Cholvy, P.; Chomier, L.; Christou, A.; Cricchio, D.; Coadou, P.; Cocaign, J. Y.; Cochard, F.; Cointin, S.; Colombi, E.; Colque Saavedra, J. P.; Corp, L.; Costa, M.; Costard, F.; Cottier, M.; Cournoyer, P.; Coustal, E.; Cremonese, G.; Cristea, O.; Cuzon, J. C.; D'Agostino, G.; Daiffallah, K.; Danescu, C.; Dardon, A.; Dasse, T.; Davadan, C.; Debs, V.; Defaix, J. P.; Deleflie, F.; D'Elia, M.; De Luca, P.; De Maria, P.; Deverchere, P.; Devillepoix, H.; Dias, A.; Di Dato, A.; Di Luca, R.; Dominici, F. M.; Drouard, A.; Dumont, J. L.; Dupouy, P.; Duvignac, L.; Egal, A.; Erasmus, N.; Esseiva, N.; Ebel, A.; Eisengarten, B.; Federici, F.; Feral, S.; Ferrant, G.; Ferreol, E.; Finitzer, P.; Foucault, A.; Francois, P.; Frincu, M.; Froger, J. L.; Gaborit, F.; Gagliarducci, V.; Galard, J.; Gardavot, A.; Garmier, M.; Garnung, M.; Gautier, B.; Gendre, B.; Gerard, D.; Gerardi, A.; Godet, J. P.; Grandchamps, A.; Grouiez, B.; Groult, S.; Guidetti, D.; Giuli, G.; Hello, Y.; Henry, X.; Herbreteau, G.; Herpin, M.; Hewins, P.; Hillairet, J. J.; Horak, J.; Hueso, R.; Huet, E.; Huet, S.; Hyaume, F.; Interrante, G.; Isselin, Y.; Jeangeorges, Y.; Janeux, P.; Jeanneret, P.; Jobse, K.; Jouin, S.; Jouvard, J. M.; Joy, K.; Julien, J. F.; Kacerek, R.; Kaire, M.; Kempf, M.; Koschny, D.; Krier, C.; Kwon, M. K.; Lacassagne, L.; Lachat, D.; Lagain, A.; Laisne, E.; Lanchares, V.; Laskar, J.; Lazzarin, M.; Leblanc, M.; Lebreton, J. P.; Lecomte, J.; Le Du, P.; Lelong, F.; Lera, S.; Leoni, J. F.; Le-Pichon, A.; Le-Poupon, P.; Leroy, A.; Leto, G.; Levansuu, A.; Lewin, E.; Lienard, A.; Licchelli, D.; Locatelli, H.; Loehle, S.; Loizeau, D.; Luciani, L.; Maignan, M.; Manca, F.; Mancuso, S.; Mandon, E.; Mangold, N.; Mannucci, F.; Maquet, L.; Marant, D.; Marchal, Y.; Marin, J. L.; Martin-Brisset, J. C.; Martin, D.; Mathieu, D.; Maury, A.; Mespoulet, N.; Meyer, F.; Meyer, J. Y.; Meza, E.; Moggi Cecchi, V.; Moiroud, J. J.; Millan, M.; Montesarchio, M.; Misiano, A.; Molinari, E.; Molau, S.; Monari, J.; Monflier, B.; Monkos, A.; Montemaggi, M.; Monti, G.; Moreau, R.; Morin, J.; Mourgues, R.; Mousis, O.; Nablanc, C.; Nastasi, A.; Niacsu, L.; Notez, P.; Ory, M.; Pace, E.; Paganelli, M. A.; Pagola, A.; Pajuelo, M.; Palacian, J. F.; Pallier, G.; Paraschiv, P.; Pardini, R.; Pavone, M.; Pavy, G.; Payen, G.; Pegoraro, A.; Pena-Asensio, E.; Perez, L.; Perez-Hoyos, S.; Perlerin, V.; Peyrot, A.; Peth, F.; Pic, V.; Pietronave, S.; Pilger, C.; Piquel, M.; Pisanu, T.; Poppe, M.; Portois, L.; Prezeau, J. F.; Pugno, N.; Quantin, C.; Quitte, G.; Rambaux, N.; Ravier, E.; Repetti, U.; Ribas, S.; Richard, C.; Richard, D.; Rigoni, M.; Rivet, J. P.; Rizzi, N.; Rochain, S.; Rojas, J. F.; Romeo, M.; Rotaru, M.; Rotger, M.; Rougier, P.; Rousselot, P.; Rousset, J.; Rousseu, D.; Rubiera, O.; Rudawska, R.; Rudelle, J.; Ruguet, J. P.; Russo, P.; Sales, S.; Sauzereau, O.; Salvati, F.; Schieffer, M.; Schreiner, D.; Scribano, Y.; Selvestrel, D.; Serra, R.; Shengold, L.; Shuttleworth, A.; Smareglia, R.; Sohy, S.; Soldi, M.; Stanga, R.; Steinhausser, A.; Strafella, F.; Sylla Mbaye, S.; Smedley, A. R. D.; Tagger, M.; Tanga, P.; Taricco, C.; Teng, J. P.; Tercu, J. O.; Thizy, O.; Thomas, J. P.; Tombelli, M.; Trangosi, R.; Tregon, B.; Trivero, P.; Tukkers, A.; Turcu, V.; Umbriaco, G.; Unda-Sanzana, E.; Vairetti, R.; Valenzuela, M.; Valente, G.; Varennes, G.; Vauclair, S.; Vergne, J.; Verlinden, M.; Vidal-Alaiz, M.; Vieira-Martins, R.; Viel, A.; Vintdevara, D. C.; Vinogradoff, V.; Volpini, P.; Wendling, M.; Wilhelm, P.; Wohlgemuth, K.; Yanguas, P.; Zagarella, R.; Zollo, A.Context. Until recently, camera networks designed for monitoring fireballs worldwide were not fully automated, implying that in case of a meteorite fall, the recovery campaign was rarely immediate. This was an important limiting factor as the most fragile - hence precious - meteorites must be recovered rapidly to avoid their alteration.
- ItemGalaxy-scale ionised winds driven by ultra-fast outflows in two nearby quasars(2020) Marasco, A.; Cresci, G.; Nardini, E.; Mannucci, F.; Marconi, A.; Tozzi, P.; Tozzi, G.; Amiri, A.; Venturi, G.; Piconcelli, E.; Lanzuisi, G.; Tombesi, F.; Mingozzi, M.; Perna, M.; Carniani, S.; Brusa, M.; Alighieri, S. di SeregoWe used MUSE adaptive optics data in narrow field mode to study the properties of the ionised gas in MR 2251-178 and PG 1126-041, two nearby (z similar or equal to 0.06) bright quasars (QSOs) hosting sub-pc scale ultra-fast outflows (UFOs) detected in the X-ray band. We decomposed the optical emission from diffuse gas into a low- and a high-velocity components. The former is characterised by a clean, regular velocity field and a low (similar to 80 km s(-1)) velocity dispersion. It traces regularly rotating gas in PG 1126-041, while in MR 2251-178 it is possibly associated with tidal debris from a recent merger or flyby. The other component is found to be extended up to a few kpc from the nuclei, and shows a high (similar to 800 km s(-1)) velocity dispersion and a blue-shifted mean velocity, as is expected from outflows driven by active galactic nuclei (AGN). We estimate mass outflow rates up to a few M-circle dot yr(-1) and kinetic efficiencies L-KIN/L-BOL between 1-4x10(-4), in line with those of galaxies hosting AGN of similar luminosities. The momentum rates of these ionised outflows are comparable to those measured for the UFOs at sub-pc scales, which is consistent with a momentum-driven wind propagation. Pure energy-driven winds are excluded unless about 100x additional momentum is locked in massive molecular winds. In comparing the outflow properties of our sources with those of a small sample of well-studied QSOs hosting UFOs from the literature, we find that winds seem to systematically lie either in a momentum-driven or an energy-driven regime, indicating that these two theoretical models bracket the physics of AGN-driven winds very well.
- ItemGas, dust, and the CO-to-molecular gas conversion factor in low-metallicity starbursts⋆(2023) Hunt, L. K.; Belfiore, F.; Lelli, F.; Draine, B. T.; Marasco, A.; Garcia-Burillo, S.; Venturi, G.; Combes, F.; Weiss, A.; Henkel, C.; Menten, K. M.; Annibali, F.; Casasola, V.; Cignoni, M.; McLeod, A.; Tosi, M.; Beltran, M.; Concas, A.; Cresci, G.; Ginolfi, M.; Kumari, N.; Mannucci, F.The factor relating CO emission to molecular hydrogen column density, X-CO, is still subject to uncertainty, in particular at low metallicity. In this paper, to quantify X-CO at two different spatial resolutions, we exploited a dust-based method together with ALMA 12-m and ACA data and H I maps of three nearby metal-poor starbursts, NGC 625, NGC 1705, and NGC 5253. Dust opacity at 250 pc resolution was derived based on dust temperatures estimated by fitting two-temperature modified blackbodies to Herschel PACS data. By using the HI maps, we were then able to estimate dust-to-gas ratios in the regions dominated by atomic gas, and, throughout the galaxy, to infer total gas column densities and H-2 column densities as the difference with HI. Finally, from the ACA CO(1-0) maps, we derived X-CO. We used a similar technique with 40 pc ALMA 12-m data for the three galaxies, but instead derived dust attenuation at 40 pc resolution from reddening maps based on VLT/MUSE data. At 250 pc resolution, we find X-CO & SIM; 10(22) - 10(23) cm(-2)/K km s(-1), 5-1000 times the Milky Way value, with much larger values than would be expected from a simple metallicity dependence. Instead, at 40 pc resolution, X-CO again shows large variation, but is roughly consistent with a power-law metallicity dependence, given the Z & SIM; 1/3 Z(& ODOT;) metal abundances of our targets. The large scatter in both estimations could imply additional parameter dependence, which we have investigated by comparing X-CO with the observed velocity-integrated brightness temperatures, I-CO, as predicted by recent simulations. Indeed, larger X-CO is significantly correlated with smaller I-CO, but with slightly different slopes and normalizations than predicted by theory. Such behavior can be attributed to the increasing fraction of CO-faint (or dark) H-2 gas with lower spatial resolution (larger beams). This confirms the idea the X-CO is multivariate, depending not only on metallicity but also on the CO brightness temperature and beam size. Future work is needed to consolidate these empirical results by sampling galaxies with different metal abundances observed at varying spatial resolutions.
- ItemMAGNUM survey: Compact jets causing large turmoil in galaxies. Enhanced line widths perpendicular to radio jets as tracers of jet-ISM interaction(2021) Venturi, G.; Cresci, G.; Marconi, A.; Mingozzi, M.; Nardini, E.; Carniani, S.; Mannucci, F.; Marasco, A.; Maiolino, R.; Perna, M.; Treister, E.; Bland-Hawthorn, J.; Gallimore, J.Context. Outflows accelerated by active galactic nuclei (AGN) are commonly observed in the form of coherent, mildly collimated high-velocity gas directed along the AGN ionisation cones and kinetically powerful (greater than or similar to 10(44-45) erg s(-1)) jets. Recent works found that outflows can also be accelerated by low-power (less than or similar to 10(44) erg s(-1)) jets, and the most recent cosmological simulations indicate that these are the dominant source of feedback on sub-kiloparsec scales, but little is known about their effect on the galaxy host.Aims. We study the relation between radio jets and the distribution and kinematics of the ionised gas in IC 5063, NGC 5643, NGC 1068, and NGC 1386 as part of our survey of nearby Seyfert galaxies called Measuring Active Galactic Nuclei Under MUSE Microscope (MAGNUM). All these objects host a small-scale (less than or similar to 1 kpc) low-power (less than or similar to 10(44) erg s(-1)) radio jet that has small inclinations (less than or similar to 45 degrees) with respect to the galaxy disc.Methods. We employed seeing-limited optical integral field spectroscopic observations from the Multi Unit Spectroscopic Explorer (MUSE) at the Very Large Telescope to obtain flux, kinematic, and excitation maps of the extended ionised gas. We compared these maps with archival radio images and in one case, with Chandra X-ray observations.Results. We detect a strong (up to greater than or similar to 800-1000 km s(-1)) and extended (greater than or similar to 1 kpc) emission-line velocity spread perpendicular to the direction of the AGN ionisation cones and jets in all four targets. The gas excitation in this region of line-width enhancement is entirely compatible with shock ionisation. These broad and symmetric line profiles are not associated with a single coherent velocity of the gas. A 'classical' outflow component with net blueshifted and redshifted motions is also present, but is directed along the ionisation cones and jets.Conclusions. We interpret the observed phenomenon as due to the action of the jets perturbing the gas in the galaxy disc. These intense and extended velocity spreads perpendicular to AGN jets and cones are indeed currently only observed in galaxies hosting a low-power jet whose inclination is sufficiently low with respect to the galaxy disc to impact on and strongly affect its material. In line with cosmological simulations, our results demonstrate that low-power jets are indeed capable of affecting the host galaxy.
- ItemMOKA3D: An innovative approach to 3D gas kinematic modelling I. Application to AGN ionised outflows(2023) Marconcini, C.; Marconi, A.; Cresci, G.; Venturi, G.; Ulivi, L.; Mannucci, F.; Belfiore, F.; Tozzi, G.; Ginolfi, M.; Marasco, A.; Carniani, S.; Amiri, A.; Di Teodoro, E.; Scialpi, M.; Tomicic, N.; Mingozzi, M.; Brazzini, M.; Moreschini, B.Studying the feedback process of active galactic nuclei (AGN) requires the characterisation of multiple kinematical components, such as rotating gas and stellar discs, outflows, inflows, and jets. The usual approach to compare the observed galaxy properties with feedback theoretical predictions relies on simplified kinematic models. This allows us to assess the mutual interaction between the galaxy components and determine the energy injection rate into the interstellar medium. However, these models have several limitations, as they often do not take into account projection effects, beam smearing, or the surface brightness distribution of the emitting medium. Here, we present MOKA(3D), an innovative approach to modelling the 3D gas kinematics from integral field spectroscopy observations. In this first paper, we discuss its application to the case of AGN ionised outflows, whose observed clumpy emission and apparently irregular kinematics are only marginally accounted for by the existing kinematical models. Unlike previous works, our model does not assume the surface brightness distribution of the gas, but exploits a novel procedure to derive it from observations by reconstructing the 3D distribution of emitting clouds and providing accurate estimates of the physical properties of spatially resolved outflow (e.g., mass rate, kinetic energy). We demonstrate the capabilities of our method by applying it to three nearby Seyfert-II galaxies observed with the Multi Unit Spectroscopic Explorer (MUSE) at the VLT and selected from the Measuring Active Galactic Nuclei Under MUSE Microscope (MAGNUM) survey, showing that the complex kinematic features observed can be described by a conical outflow with a constant radial velocity field and a clumpy distribution of clouds.
- ItemMOONS: The New Multi-Object Spectrograph for the VLT(2020) Cirasuolo, M.; Fairley, A.; Rees, P.; González, O. A.; Taylor, W.; Maiolino, R.; Afonso, J.; Evans, C.; Flores, H.; Lilly, S.; Oliva, E.; Paltani, S.; Vanzi, L.; Abreu, M.; Accardo, M.; Adams, N.; Álvarez Méndez, D.; Amans, J. -P.; Amarantidis, S.; Atek, H.; Atkinson, D.; Banerji, M.; Barrett, J.; Barrientos, F.; Bauer, F.; Beard, S.; Béchet, C.; Belfiore, A.; Bellazzini, M.; Benoist, C.; Best, P.; Biazzo, K.; Black, M.; Boettger, D.; Bonifacio, P.; Bowler, R.; Bragaglia, A.; Brierley, S.; Brinchmann, J.; Brinkmann, M.; Buat, V.; Buitrago, F.; Burgarella, D.; Burningham, B.; Buscher, D.; Cabral, A.; Caffau, E.; Cardoso, L.; Carnall, A.; Carollo, M.; Castillo, R.; Castignani, G.; Catelan, Márcio; Cicone, C.; Cimatti, A.; Cioni, M. -R. L.; Clementini, G.; Cochrane, W.; Coelho, J.; Colling, M.; Contini, T.; Contreras, R.; Conzelmann, R.; Cresci, G.; Cropper, M.; Cucciati, O.; Cullen, F.; Cumani, C.; Curti, M.; Da Silva, A.; Daddi, E.; Dalessandro, E.; Dalessio, F.; Dauvin, L.; Davidson, G.; de Laverny, P.; Delplancke-Ströbele, F.; De Lucia, G.; Del Vecchio, C.; Dessauges-Zavadsky, M.; Di Matteo, P.; Dole, H.; Drass, H.; Dunlop, J.; Dünner, R.; Eales, S.; Ellis, R.; Enriques, B.; Fasola, G.; Ferguson, A.; Ferruzzi, D.; Fisher, M.; Flores, M.; Fontana, A.; Forchi, V.; Francois, P.; Franzetti, P.; Gargiulo, A.; Garilli, B.; Gaudemard, J.; Gieles, M.; Gilmore, G.; Ginolfi, M.; Gomes, J. M.; Guinouard, I.; Gutierrez, P.; Haigron, R.; Hammer, F.; Hammersley, P.; Haniff, C.; Harrison, C.; Haywood, M.; Hill, V.; Hubin, N.; Humphrey, A.; Ibata, R.; Infante, L.; Ives, D.; Ivison, R.; Iwert, O.; Jablonka, P.; Jakob, G.; Jarvis, M.; King, D.; Kneib, J. -P.; Laporte, P.; Lawrence, A.; Lee, D.; Li Causi, G.; Lorenzoni, S.; Lucatello, S.; Luco, Y.; Macleod, A.; Magliocchetti, M.; Magrini, L.; Mainieri, V.; Maire, C.; Mannucci, F.; Martin, N.; Matute, I.; Maurogordato, S.; McGee, S.; Mcleod, D.; McLure, R.; McMahon, R.; Melse, B. -T.; Messias, H.; Mucciarelli, A.; Nisini, B.; Nix, J.; Norberg, P.; Oesch, P.; Oliveira, A.; Origlia, L.; Padilla, N.; Palsa, R.; Pancino, E.; Papaderos, P.; Pappalardo, C.; Parry, I.; Pasquini, L.; Peacock, J.; Pedichini, F.; Pello, R.; Peng, Y.; Pentericci, L.; Pfuhl, O.; Piazzesi, R.; Popovic, D.; Pozzetti, L.; Puech, M.; Puzia, T.; Raichoor, A.; Randich, S.; Recio-Blanco, A.; Reis, S.; Reix, F.; Renzini, A.; Rodrigues, M.; Rojas, Felipe; Rojas-Arriagada, Á.; Rota, S.; Royer, F.; Sacco, G.; Sanchez-Janssen, R.; Sanna, N.; Santos, P.; Sarzi, M.; Schaerer, D.; Schiavon, R.; Schnell, R.; Schultheis, M.; Scodeggio, M.; Serjeant, S.; Shen, T. -C.; Simmonds, C.; Smoker, J.; Sobral, D.; Sordet, M.; Spérone, D.; Strachan, J.; Sun, X.; Swinbank, M.; Tait, G.; Tereno, I.; Tojeiro, R.; Torres, M.; Tosi, M.; Tozzi, A.; Tresiter, E.; Valenti, E.; Valenzuela Navarro, Á.; Vanzella, E.; Vergani, S.; Verhamme, A.; Vernet, J.; Vignali, C.; Vinther, J.; Von Dran, L.; Waring, C.; Watson, S.; Wild, V.; Willesme, B.; Woodward, B.; Wuyts, S.; Yang, Y.; Zamorani, G.; Zoccali, M.; Bluck, A.; Trussler, J.MOONS is the new Multi-Object Optical and Near-infrared Spectrograph currently under construction for the Very Large Telescope (VLT) at ESO. This remarkable instrument combines, for the first time, the collecting power of an 8-m telescope, 1000 fibres with individual robotic positioners, and both low- and high-resolution simultaneous spectral coverage across the 0.64-1.8 μm wavelength range. This facility will provide the astronomical community with a powerful, world-leading instrument able to serve a wide range of Galactic, extragalactic and cosmological studies. Construction is now proceeding full steam ahead and this overview article presents some of the science goals and the technical description of the MOONS instrument. More detailed information on the MOONS surveys is provided in the other dedicated articles in this Messenger issue....
- ItemNew multiple AGN systems with subarcsec separation: Confirmation of candidates selected via the novel GMP method(2023) Ciurlo, A.; Mannucci, F.; Yeh, S.; Amiri, A.; Carniani, S.; Cicone, C.; Cresci, G.; Lusso, E.; Marasco, A.; Marconcini, C.; Marconi, A.; Nardini, E.; Pancino, E.; Rosati, P.; Rubinur, K.; Severgnini, P.; Scialpi, M.; Tozzi, G.; Venturi, G.; Vignali, C.; Volonteri, M.The existence of multiple active galactic nuclei (AGNs) at small projected distances on the sky is due to either the presence of multiple, inspiraling supermassive black holes, or to gravitational lensing of a single AGN. Both phenomena allow us to address important astrophysical and cosmological questions. However, few kiloparsec-separation multiple AGNs are currently known. Recently, the newly developed Gaia multi-peak (GMP) method provided numerous new candidate members of these populations. We present spatially resolved, integral-field spectroscopy of a sample of four GMP-selected multiple AGN candidates. In all of these systems, we detect two or more components with subarcsec separations. We find that two of the systems are dual AGNs, one is either an intrinsic triple or a lensed dual AGN, while the last system is a chance alignment of an AGN and a star. Our observations double the number of confirmed multiple AGNs at projected separations below 7 kpc at z > 0.5, present the first detection of a possible triple AGN in a single galaxy at z > 0.5, and successfully test the GMP method as a novel technique to discover previously unknown multiple AGNs.
- ItemProperties of the multiphase outflows in local (ultra)luminous infrared galaxies(2021) Fluetsch, A.; Maiolino, R.; Carniani, S.; Arribas, S.; Belfiore, F.; Bellocchi, E.; Cazzoli, S.; Cicone, C.; Cresci, G.; Fabian, A. C.; Gallagher, R.; Ishibashi, W.; Mannucci, F.; Marconi, A.; Perna, M.; Sturm, E.; Venturi, G.Galactic outflows are known to consist of several gas phases; however, the connection between these phases has been investigated little and only in a few objects. In this paper, we analyseMulti Unit Spectroscopic Explorer (MUSE)/Very Large Telescope (VLT) data of 26 local (U)LIRGs and study their ionized and neutral atomic phases. We also include objects from the literature to obtain a sample of 31 galaxies with spatially resolved multiphase outflow information. We find that the ionized phase of the outflows has on average an electron density three times higher than the disc (n(e,disc) similar to 145 cm(-3) versus n(e,outflow) similar to 500 cm(-3)), suggesting that cloud compression in the outflow is more important than cloud dissipation. We find that the difference in extinction between outflow and disc correlates with the outflow gas mass. Together with the analysis of the outflow velocities, this suggests that at least some of the outflows are associated with the ejection of dusty clouds from the disc. This may support models where radiation pressure on dust contributes to driving galactic outflows. The presence of dust in outflows is relevant for potential formation of molecules inside them. We combine our data with millimetre data to investigate the molecular phase. We find that the molecular phase accounts for more than 60 per cent of the total mass outflow rate in most objects and this fraction is higher in active galactic nuclei (AGN)-dominated systems. The neutral atomic phase contributes of the order of 10 per cent, while the ionized phase is negligible. The ionized-to-molecular mass outflow rate declines slightly with AGN luminosity, although with a large scatter.
- ItemShaken, but not expelled: Gentle baryonic feedback from nearby starburst dwarf galaxies(2023) Marasco, A.; Belfiore, F.; Cresci, G.; Lelli, F.; Venturi, G.; Hunt, L. K.; Concas, A.; Marconi, A.; Mannucci, F.; Mingozzi, M.; McLeod, A. F.; Kumari, N.; Carniani, S.; Vanzi, L.; Ginolfi, M.Baryonic feedback is expected to play a key role in regulating the star formation of low-mass galaxies by producing galaxy-scale winds associated with mass-loading factors of beta similar to 1-50. We test this prediction using a sample of 19 nearby systems with stellar masses of 10(7) M-star/M-circle dot < 10(10), mostly lying above the main sequence of star-forming galaxies. We used MUSE at VLT optical integral field spectroscopy to study the warm ionised gas kinematics of these galaxies via a detailed modelling of their H alpha emission line. The ionised gas is characterised by irregular velocity fields, indicating the presence of non-circular motions of a few tens of km s(-1) within galaxy discs, but with intrinsic velocity dispersion of 40-60 km s(-1) that are only marginally larger than those measured in main-sequence galaxies. Galactic winds, defined as gas at velocities larger than the galaxy escape speed, encompass only a few percent of the observed fluxes. Mass outflow rates and loading factors are strongly dependent on M-star, the star formation rate (SFR), SFR surface density, and specific SFR (sSFR). For M-star of 10(8) M-circle dot we find beta similar or equal to 0.02, which is more than two orders of magnitude smaller than the values predicted by theoretical models of galaxy evolution. In our galaxy sample, baryonic feedback stimulates a gentle gas cycle rather than causing a large-scale blow-out.
- ItemThe VANDELS ESO public spectroscopic survey: Final data release of 2087 spectra and spectroscopic measurements(2021) Garilli, B.; McLure, R.; Pentericci, L.; Franzetti, P.; Gargiulo, A.; Carnall, A.; Cucciati, O.; Iovino, A.; Amorin, R.; Bolzonella, M.; Bongiorno, A.; Castellano, M.; Cimatti, A.; Cirasuolo, M.; Cullen, F.; Dunlop, J.; Elbaz, D.; Finkelstein, S.; Fontana, A.; Fontanot, F.; Fumana, M.; Guaita, L.; Hartley, W.; Jarvis, M.; Juneau, S.; Maccagni, D.; McLeod, D.; Nandra, K.; Pompei, E.; Pozzetti, L.; Scodeggio, M.; Talia, M.; Calabro, A.; Cresci, G.; Fynbo, J. P. U.; Hathi, N. P.; Hibon, P.; Koekemoer, A. M.; Magliocchetti, M.; Salvato, M.; Vietri, G.; Zamorani, G.; Almaini, O.; Balestra, I.; Bardelli, S.; Begley, R.; Brammer, G.; Bell, E. F.; Bowler, R. A. A.; Brusa, M.; Buitrago, F.; Caputi, C.; Cassata, P.; Charlot, S.; Citro, A.; Cristiani, S.; Curtis-Lake, E.; Dickinson, M.; Fazio, G.; Ferguson, H. C.; Fiore, F.; Franco, M.; Georgakakis, A.; Giavalisco, M.; Grazian, A.; Hamadouche, M.; Jung, I.; Kim, S.; Khusanova, Y.; Le Fevre, O.; Longhetti, M.; Lotz, J.; Mannucci, F.; Maltby, D.; Matsuoka, K.; Mendez-Hernandez, H.; Mendez-Abreu, J.; Mignoli, M.; Moresco, M.; Nonino, M.; Pannella, M.; Papovich, C.; Popesso, P.; Roberts-Borsani, G.; Rosario, D. J.; Saldana-Lopez, A.; Santini, P.; Saxena, A.; Schaerer, D.; Schreiber, C.; Stark, D.; Tasca, L. A. M.; Thomas, R.; Vanzella, E.; Wild, V.; Williams, C.; Zucca, E.VANDELS is an ESO Public Spectroscopic Survey designed to build a sample of high-signal-to-noise ratio, medium-resolution spectra of galaxies at redshifts between 1 and 6.5. Here we present the final Public Data Release of the VANDELS Survey, comprising 2087 redshift measurements. We provide a detailed description of sample selection, observations, and data reduction procedures. The final catalogue reaches a target selection completeness of 40% at i(AB)=25. The high signal-to-noise ratio of the spectra (above 7 in 80% of the spectra) and the dispersion of 2.5 angstrom allowed us to measure redshifts with high precision, the redshift measurement success rate reaching almost 100%. Together with the redshift catalogue and the reduced spectra, we also provide optical mid-infrared photometry and physical parameters derived through fitting the spectral energy distribution. The observed galaxy sample comprises both passive and star forming galaxies covering a stellar mass range of 8.3 < Log(M-*/M-circle dot) < 11.7.
