Browsing by Author "Kuehn, C."
Now showing 1 - 6 of 6
Results Per Page
Sort Options
- ItemStellar archaeology in the Milky Way Halo . Variable stars and stellar populations in the new Milky Way satellites discovered by the SDSS(2010) Musella, I.; Clementini, G.; Ripepi, V.; Dall'Ora, M.; Marconi, M.; Greco, C.; Moretti, M. I.; Kinemuchi, K.; Di Fabrizio, L.; Smith, H. A.; Kuehn, C.; Rodgers, C. T.; Beers, T. C.; Catelan, Marcio; Pritzl, B. J.We summarize results from the photometric survey of the recently discovered faint Milky Way satellites: Bootes I, Coma, Ursa Major II, Canes Venatici I, Canes Venatici II and Leo IV. Our team is studying these systems to characterize their stellar populations and structural parameters, as well as their variable star content, with the aim of deriving hints on the formation process of the Galactic halo....
- ItemStellar populations of the newly discovered satellites of the Milky Way .(2008) Dall'Ora, M.; Clementini, G.; Ripepi, V.; Kinemuchi, K.; Greco, C.; Kuehn, C.; Musella, I.; Rodgers, C. T.; Di Fabrizio, L.; Beers, T. C.; Catelan, Marcio; Marconi, M.; Pritzl, B. J.; Smith., H. A.We have carried out an extensive observing campaign on the new dwarf spheroidal galaxies (dSphs) recently discovered by the SDSS, with the aim of characterizing their stellar populations and structural properties, as well as their variable star content. First preliminary results are presented for the Canes Venatici II, the Coma and the Ursa Major II dSphs, based on data collected at a variety of telescopes, and reaching each galaxy's Main Sequence Turn-Off (MSTO)....
- ItemThe Oosterhoff Dichotomy in the Milky Way and Other Local Group Galaxies(2010) Smith, Horace A.; Catelan, Marcio; Clementini, G.; Kuehn, C.; Pritzl, B.; Beers, T.; De Lee, N.; Kinemuchi, K.; Greco, C.; Ripepi, V.; Marconi, M.; Musella, I.; Moretti, M. I.; Dall'Ora, M.; Contreras, R.; Zorotovic, M.In 1939, P. Th. Oosterhoff investigated the properties of RR Lyrae stars in five of the globular clusters of the Milky Way. He discovered that these clusters divided into two groups, now known as Oosterhoff groups I and II, on the basis of the properties of their RR Lyrae stars. Subsequent studies of RR Lyrae variables in additional globular clusters found that most Milky Way globular clusters that contain significant numbers of RR Lyrae stars fall into one or another of the two Oosterhoff groups. Moreover, globular clusters of Oosterhoff group I tend to be more metal-rich than those of Oosterhoff group II. However, the dwarf galaxies surrounding the Milky Way, and their globular clusters, do not exhibit the Oosterhoff dichotomy. Moreover, the bulge globular clusters NGC 6388 and NGC 6441 cannot be easily assigned to one of the traditional Oosterhoff groups. We will discuss the implications of the Oosterhoff dichotomy and the Oosterhoff gap for stellar evolution and for the formation and evolution of the Galactic halo. This work has been supported in part by the National Science Foundation....
- ItemVariable stars in large magellanic cloud globular clusters. I. NGC 1466(2011) Kuehn, C.; Catelan, Márcio
- ItemVariable stars in large magellanic cloud globular clusters. II. NGC 1786(2012) Kuehn, C.; Catelan, Márcio
- ItemVariable stars in the newly discovered milky way dwarf spheroidal satellite canes venatici I(2008) Kuehn, C.; Catelan, Márcio