Browsing by Author "Kruhler, T."
Now showing 1 - 4 of 4
Results Per Page
Sort Options
- ItemGRB 120422A/SN 2012bz : Bridging the gap between low- and high-luminosity gamma-ray bursts(2014) Schulze, S.; Malesani, D.; Cucchiara, A.; Tanvir, N.; Kruhler, T.; De Ugarte Postigo, A.; Leloudas, G.; Lyman, J.; Bersier, D.; Bauer, Franz Erik
- ItemMolecular hydrogen in the damped Lyman α system towards GRB 120815A at z=2.36(2013) Kruhler, T.; Ledoux, C.; Fynbo, J. P. U.; Vreeswijk, P. M.; Schmidl, S.; Malesani, D.; Christensen, L.; De Cia, A.; Hjorth, J.; Jakobsson, P.; Kann, D. A.; Kaper, L.; Vergani, S. D.; Afonso, P. M. J.; Covino, S.; de Ugarte Postigo, A.; D'Elia, V.; Filgas, R.; Goldoni, P.; Greiner, J.; Hartoog, O. E.; Milvang-Jensen, B.; Nardini, M.; Piranomonte, S.; Rossi, A.; Sanchez-Ramirez, R.; Schady, P.; Schulze, S.; Sudilovsky, V.; Tanvir, N. R.; Tagliaferri, G.; Watson, D. J.; Wiersema, K.; Wijers, R. A. M. J.; Xu, D.We present the discovery of molecular hydrogen (H-2), including the presence of vibrationally-excited H-2* in the optical spectrum of the of GRB 120815A at z = 2.36 obtained with X-shooter at the VLT. Simultaneous photometric broad-band data from GROND X-ray observations by SwiftXRT place further constraints on the amount and nature of dust along the sightline. The galactic of GRB 120815A is characterized by a strong DLA with log(N(H I) = cm(-2)) = 21.95 +/- 0.10, prominent H-2 absorption the Lyman-Werner bands (log(N(H-2) = cm(-2)) = 20.54 +/- 0.13) and thus a molecular gas fraction log f(H-2) = 1.14 +/- 0.15. The d between the absorbing neutral gas and GRB 120815A is constrained via photo-excitation modeling of fine-structure and stable transitions of Fe II and Ni II to d = 0.5 +/- 0.1 kpc. The DLA metallicity ([Zn = H] = 1.15 +/- 0.12), visual extinction AV less than or similar to 0.15 mag) and dust depletion ([Zn = Fe] = 1.01 +/- 0.10) are intermediate between the values of well-studied, H-2-deficient DLAs observed at high spectral resolution, and the approximately solar metallicity, highly-obscured and H-2-rich GRB 080607 With respect to N(H I), metallicity, as well as dust-extinction and depletion, GRB 120815A is fairly representative of the properties of GRB-DLAs. This demonstrates that molecular hydrogen is present in at least a fraction of the more typical GRB- and H-2 and H-2* are probably more wide-spread among GRB-selected systems than the few examples of previous detections suggest. Because H-2* transitions are located redwards of the Lyman alpha absorption, H-2* opens a second route for positive searches molecular absorption also in GRB afterglows at lower redshifts and observed at lower spectral resolution. Further detections of gas in GRB-DLAs would allow statistical studies, and, coupled with host follow-up and sub-mm spectroscopy, provide insights into the process and conditions of star-formation at high redshift.
- ItemSpectroscopy of superluminous supernova host galaxies : A preference of hydrogen-poor events for extreme emission line galaxies(2015) Leloudas, G.; Schulze, S.; Kruhler, T.; Gorosabel, J.; Christensen, L.; Mehner, A.; De Ugarte Postigo, A.; Amorin, R.; Thone, C.; Bauer, Franz Erik
- ItemTHE SWIFT GRB HOST GALAXY LEGACY SURVEY. II. REST-FRAME NEAR-IR LUMINOSITY DISTRIBUTION AND EVIDENCE FOR A NEAR-SOLAR METALLICITY THRESHOLD(IOP PUBLISHING LTD, 2016) Perley, D. A.; Tanvir, N. R.; Hjorth, J.; Laskar, T.; Berger, E.; Chary, R.; de Ugarte Postigo, A.; Fynbo, J. P. U.; Kruhler, T.; Levan, A. J.; Michalowski, M. J.; Schulze, S.We present rest-frame near-IR (NIR) luminosities and stellar masses for a large and uniformly selected population of gamma-ray burst (GRB) host galaxies using deep Spitzer Space Telescope imaging of 119 targets from the Swift GRB Host Galaxy Legacy Survey spanning 0.03 < z < 6.3, and we determine the effects of galaxy evolution and chemical enrichment on the mass distribution of the GRB host population across cosmic history. We find a rapid increase in the characteristic NIR host luminosity between z similar to 0.5 and z similar to 1.5, but little variation between z similar to 1.5 and z similar to 5. Dust-obscured GRBs dominate the massive host population but are only rarely seen associated with low-mass hosts, indicating that massive star-forming galaxies are universally and (to some extent) homogeneously dusty at high. redshift while low-mass star-forming galaxies retain little dust in their interstellar medium. Comparing our luminosity distributions with field surveys and measurements of the high-z mass-metallicity relation, our results have good consistency with a model in which the GRB rate per unit star formation is constant in galaxies with gas-phase metallicity below approximately the solar value but heavily suppressed in more metal-rich environments. This model also naturally explains the previously reported "excess" in the GRB rate beyond z greater than or similar to 2; metals stifle GRB production in most galaxies at z < 1.5 but have only minor impact at higher redshifts. The metallicity threshold we infer is much higher than predicted by single-star models and favors a binary progenitor. Our observations also constrain the fraction of cosmic star formation in low-mass galaxies undetectable to Spitzer to be small at z < 4.