Browsing by Author "Klein Posternack, Andrés David"
Now showing 1 - 8 of 8
Results Per Page
Sort Options
- Itemc-Abl activates RIPK3 signaling in Gaucher disease(2021) Yañez Henríquez, María José; Campos, F.; Marín Marín, Tamara Alejandra; Klein Posternack, Andrés David; Futerman, A. H.; Álvarez, Alejandra R.; Zanlungo Matsuhiro, SilvanaGaucher disease (GD) is caused by homozygous mutations in the GBA1 gene, which encodes the lysosomal β-glucosidase (GBA) enzyme. GD affects several organs and tissues, including the brain in certain variants of the disease. Heterozygous GBA1 variants are a major genetic risk factor for developing Parkinson's disease. The RIPK3 kinase is relevant in GD and its deficiency improves the neurological and visceral symptoms in a murine GD model. RIPK3 mediates necroptotic-like cell death: it is unknown whether the role of RIPK3 in GD is the direct induction of necroptosis or if it has a more indirect function by mediating necrosis-independent. Also, the mechanisms that activate RIPK3 in GD are currently unknown. In this study, we show that c-Abl tyrosine kinase participates upstream of RIPK3 in GD. We found that the active, phosphorylated form of c-Abl is increased in several GD models, including patient's fibroblasts and GBA null mice. Furthermore, its pharmacological inhibition with the FDA-approved drug Imatinib decreased RIPK3 signaling. We found that c-Abl interacts with RIPK3, that RIPK3 is phosphorylated at a tyrosine site, and that this phosphorylation is reduced when c-Abl is inhibited. Genetic ablation of c-Abl in neuronal GD and GD mice models significantly reduced RIPK3 activation and MLKL downstream signaling. These results showed that c-Abl signaling is a new upstream pathway that activates RIPK3 and that its inhibition is an attractive therapeutic approach for the treatment of GD.
- ItemDisruption in connexin-based communication is associated with intracellular Ca²⁺ signal alterations in astrocytes from Niemann-Pick type C mice(2013) Sáez Pedraza, Pablo José; Orellana Roca, Juan Andrés; Vega-Riveros, Natalia; Figueroa, Vania A.; Hernández Trejo, Diego Eduardo; Castro, Juan Francisco; Klein Posternack, Andrés David; Jean X. Jiang; Zanlungo Matsuhiro, Silvana; Sáez Carreño, Juan CarlosReduced astrocytic gap junctional communication and enhanced hemichannel activity were recently shown to increase astroglial and neuronal vulnerability to neuroinflammation. Moreover, increasing evidence suggests that neuroinflammation plays a pivotal role in the development of Niemann-Pick type C (NPC) disease, an autosomal lethal neurodegenerative disorder that is mainly caused by mutations in the NPC1 gene. Therefore, we investigated whether the lack of NPC1 expression in murine astrocytes affects the functional state of gap junction channels and hemichannels. Cultured cortical astrocytes of NPC1 knock-out mice (Npc1⁻/⁻) showed reduced intercellular communication via gap junctions and increased hemichannel activity. Similarly, astrocytes of newborn Npc1⁻/⁻ hippocampal slices presented high hemichannel activity, which was completely abrogated by connexin 43 hemichannel blockers and was resistant to inhibitors of pannexin 1 hemichannels. Npc1⁻/⁻ astrocytes also showed more intracellular Ca²⁺ signal oscillations mediated by functional connexin 43 hemichannels and P2Y₁ receptors. Therefore, Npc1⁻/⁻ astrocytes present features of connexin based channels compatible with those of reactive astrocytes and hemichannels might be a novel therapeutic target to reduce neuroinflammation in NPC disease.
- ItemFinding pathogenic commonalities between Niemann-Pick type C and other lysosomal storage disorders: opportunities for shared therapeutic interventions(2020) Yañez Henríquez, María José; Marín Marín, Tamara Alejandra; Balboa Castillo, Elisa; Klein Posternack, Andrés David; Álvarez, Alejandra R.; Zanlungo Matsuhiro, SilvanaLysosomal storage disorders (LSDs) are diseases characterized by the accumulation of macromolecules in the late endocytic system and are caused by inherited defects in genes that encode mainly lysosomal enzymes or transmembrane lysosomal proteins. Niemann-Pick type C disease (NPCD), a LSD characterized by liver damage and progressive neurodegeneration that leads to early death, is caused by mutations in the genes encoding the NPC1 or NPC2 proteins. Both proteins are involved in the transport of cholesterol from the late endosomal compartment to the rest of the cell. Loss of function of these proteins causes primary cholesterol accumulation, and secondary accumulation of other lipids, such as sphingolipids, in lysosomes. Despite years of studying the genetic and molecular bases of NPCD and related-lysosomal disorders, the pathogenic mechanisms involved in these diseases are not fully understood. In this review we will summarize the pathogenic mechanisms described for NPCD and we will discuss their relevance for other LSDs with neurological components such as Niemann- Pick type A and Gaucher diseases. We will particularly focus on the activation of signaling pathways that may be common to these three pathologies with emphasis on how the intra-lysosomal accumulation of lipids leads to pathology, specifically to neurological impairments. We will show that although the primary lipid storage defect is different in these three LSDs, there is a similar secondary accumulation of metabolites and activation of signaling pathways that can lead to common pathogenic mechanisms. This analysis might help to delineate common pathological mechanisms and therapeutic targets for lysosomal storage diseases.
- ItemLack of Activation of the Unfolded Protein Response in Mouse and Cellular Models of Niemann-Pick Type C Disease(2011) Klein Posternack, Andrés David; Mosqueira Montero, Matías José; Martínez, Gabriela; Robledo Plaza, Fermín Alberto; González Bustos, Marcela Paz; Caballero, Benjamín; Cancino Lobos, Gonzalo; Álvarez Rojas, Alejandra Beatriz; Hetz, Claudio; Zanlungo Matsuhiro, SilvanaBackground: Niemann-Pick type C (NPC) disease is a fatal lysosomal storage disease related to progressive neurode-generation secondary to abnormal intracellular accumulation of cholesterol. Signs of endoplasmic reticulum (ER) stress have been reported in other lipidoses. Adaptation to ER stress is mediated by the unfolded protein response (UPR), an integrated signal transduction pathway that attenuates stress or triggers apoptosis of irreversibly damaged cells. Objective: To investigate the possible engagement of ER stress responses in NPC models. Methods: We used NPC1 deficient mice and an NPC cell-based model by knocking down the expression of NPC1 to measure several UPR markers through different approaches. Results: Despite expectations that the UPR will be activated in NPC, our results indicate a lack of ER stress reactions in the cerebellum of symptomatic mice. Similarly, knocking down NPC1 in Neuro2a cells leads to clear cholesterol accumulation without evidence of UPR activation. Conclusion: Our results suggest that cholesterol overload and neuronal dysfunction in NPC is not associated with ER stress, which contrasts with recent reports suggesting the activation of the UPR in other lysosomal storage diseases. Copyright (c) 2010 S. Karger AG, Basel
- ItemLack of Annexin A6 exacerbates liver dysfunction and reduces lifespan of Niemann-Pick Type C protein-deficient mice(2020) Meneses-Salas, Elsa; García-Forn, Marta; Castany-Pladevall, Carla; Lu, Albert; Fajardo, Alba; José, Jaimy; Wahba, Mohamed; Bosch, Marta; Pol, Albert; Tebar, Francesc; Klein Posternack, Andrés David; Zanlungo Matsuhiro, Silvana; Pérez-Navarro, Esther; Grewal, Thomas; Enrich, Carlos; Rentero, CarlesNiemann-Pick type C (NPC) disease is a lysosomal storage disorder characterized by cholesterol accumulation caused by loss-of-function mutations in the Npc1 gene. NPC disease primarily affects the brain, causing neuronal damage and affecting motor coordination. In addition, considerable liver malfunction in NPC disease is common. Recently, we found that the depletion of annexin A6 (ANXA6), which is most abundant in the liver and involved in cholesterol transport, ameliorated cholesterol accumulation in Npc1 mutant cells. To evaluate the potential contribution of ANXA6 in the progression of NPC disease, double-knockout mice (Npc1-/-/Anxa6-/-) were generated and examined for lifespan, neurologic and hepatic functions, as well as liver histology and ultrastructure. Interestingly, lack of ANXA6 in NPC1-deficient animals did not prevent the cerebellar degeneration phenotype, but further deteriorated their compromised hepatic functions and reduced their lifespan. Moreover, livers of Npc1-/-/Anxa6-/- mice contained a significantly elevated number of foam cells congesting the sinusoidal space, a feature commonly associated with inflammation. We hypothesize that ANXA6 deficiency in Npc1-/- mice not only does not reverse neurologic and motor dysfunction, but further worsens overall liver function, exacerbating hepatic failure in NPC disease.
- ItemLysosomal vitamin E accumulation in Niemann-Pick type C disease(2011) Yévenes, Luz Fernanda; Klein Posternack, Andrés David; Castro, Juan Francisco; Marín Marín, Tamara Alejandra; Leal Reyes, Nancy Valeria; Leighton Puga, Federico; Álvarez, Alejandra R.; Zanlungo Matsuhiro, SilvanaNiemann-Pick C disease (NPC) is a neuro-visceral lysosomal storage disorder mainly caused by genetic defects in the NPC1 gene. As a result of loss of NPC1 function large quantities of free cholesterol and other lipids accumulate within late endosomes and lysosomes. In NPC livers and brains, the buildup of lipids correlates with oxidative damage; however the molecular mechanisms that trigger it remain unknown. Here we study potential alterations in vitamin E (α-tocopherol, α-TOH), the most potent endogenous antioxidant, in liver tissue and neurons from NPC1 mice. We found increased levels of α-TOH in NPC cells. We observed accumulation and entrapment of α-TOH in NPC neurons, mainly in the late endocytic pathway. Accordingly, α-TOH levels were increased in cerebellum of NPC1 mice. Also, we found decreased mRNA levels of the α-TOH transporter, α-Tocopherol Transfer Protein (α-TTP), in the cerebellum of NPC1 mice. Finally, by subcellular fractionation studies we detected a significant increase in the hepatic α-TOH content in purified lysosomes from NPC1 mice. In conclusion, these results suggest that NPC cells cannot transport vitamin E correctly leading to α-TOH buildup in the endosomal/lysosomal system. This may result in a decreased bioavailability and impaired antioxidant function of vitamin E in NPC, contributing to the disease pathogenesis.
- ItemOxidative stress activates the c-Abl/p73 proapoptotic pathway in Niemann-Pick type C neurons(2010) Klein Posternack, Andrés David; Maldonado Vera, Carola Patricia; Vargas Rojas, Lina Marcela; González Bustos, Marcela Paz; Robledo Plaza, Fermín Alberto; Pérez de Arce Guzman, Karen Andrea; Muñoz, Francisco J.; Hetz, Claudio; Álvarez, Alejandra R.; Zanlungo Matsuhiro, SilvanaNiemann-Pick type C (NPC) is a neurodegenerative disease characterized by the intralysosomal accumulation of cholesterol leading to neuronal apoptosis. We have previously reported the activation of the c-Abl/p73 proapoptotic pathway in the cerebellum of NPC mice; however, upstream signals underlying the engagement of this pathway remain unknown. Here, we investigate the possible role of oxidative stress in the activation of c-Abl/p73 using different in vitro and in vivo NPC models. Our results indicate a close temporal correlation between the appearance of nitrotyrosine (N-Tyr; a post-translational tyrosine modification caused by oxidative stress) and the activation of c-Abl/p73 in NPC models. To test the functional role of oxidative stress in NPC, we have treated NPC neurons with the antioxidant NAC and observed a dramatic decrease of c-Abl/p73 activation and a reduction in the levels of apoptosis in NPC models. In conclusion, our data suggest that oxidative stress is the main upstream stimulus activating the c-Abl/p73 pathway and neuronal apoptosis in NPC neurons.
- ItemUnderstanding the phenotypic variability in Niemann-Pick disease type C (NPC): a need for precision medicine(Nature Research, 2023) De Las Heras Barros, Macarena Cruz; Szenfeld, Benjamín; Ballout, Rami; Buratti, Emanuele; Zanlungo Matsuhiro, Silvana; Dardis, Andrea; Klein Posternack, Andrés David© 2023, Springer Nature Limited and Centre of Excellence in Genomic Medicine Research, King Abdulaziz University.Niemann-Pick type C (NPC) disease is a lysosomal storage disease (LSD) characterized by the buildup of endo-lysosomal cholesterol and glycosphingolipids due to loss of function mutations in the NPC1 and NPC2 genes. NPC patients can present with a broad phenotypic spectrum, with differences at the age of onset, rate of progression, severity, organs involved, effects on the central nervous system, and even response to pharmacological treatments. This article reviews the phenotypic variation of NPC and discusses its possible causes, such as the remaining function of the defective protein, modifier genes, sex, environmental cues, and splicing factors, among others. We propose that these factors should be considered when designing or repurposing treatments for this disease. Despite its seeming complexity, this proposition is not far-fetched, considering the expanding interest in precision medicine and easier access to multi-omics technologies.