Browsing by Author "John Selker"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
- ItemRecession discharge from compartmentalized bedrock hillslopes: hydrogeological processes and solutions for model calibration(2024) Clement Roques; Ronan Abhervé; Marti, Etienne; Nicolas Cornette; Jean-Raynald de Dreuzy; David Rupp; Alexandre Boisson; Sarah Leray; Philip Brunner; John SelkerDue to the difficulties of gathering relevant data of groundwater systems and the lack of fundamental physically-based understanding on the processes involved, the representation of groundwater flow heterogeneity in catchment- to regional-scale hydrological models is often overlooked. We often limit the representation of groundwater with simplified homogeneous and shallow aquifers where effective hydraulic properties are derived from global-scale database. This raises questions regarding the validity of such models to quantify the potential impacts of climate change, where subsurface heterogeneity is expected to play a major role in their short- to long- term regulation.We will present the results of a numerical modelling experiment designed to explore the role of the vertical compartmentalization of hillslopes on groundwater flow and recession discharge. We found that, when hydraulic properties are vertically compartmentalized, streamflow recession behaviour may strongly deviate from what is predicted by groundwater theory that considers the drainage of shallow reservoirs with homogeneous properties. We further identified the hillslope configurations for which the homogeneous theory derived from the Boussinesq solution approximately holds and, conversely, for those for which it does not. By comparing the modelled streamflow recession discharge and the groundwater table dynamics, we identify the critical hydrogeological conditions responsible for the emergence of strong deviations. We further present new solutions to better represent subsurface heterogeneity in catchment-scale models and calibrate hydraulic parameters that properly capture the groundwater and streamflow dynamics.