Browsing by Author "Japelj, J."
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- ItemObservational constraints on the optical and near-infrared emission from the neutron star-black hole binary merger candidate S190814bv(2020) Ackley, K.; Amati, L.; Barbieri, C.; Bauer, F. E.; Benetti, S.; Bernardini, M. G.; Bhirombhakdi, K.; Botticella, M. T.; Branchesi, M.; Brocato, E.; Bruun, S. H.; Bulla, M.; Campana, S.; Cappellaro, E.; Castro-Tirado, A. J.; Chambers, K. C.; Chaty, S.; Chen, T-W; Ciolfi, R.; Coleiro, A.; Copperwheat, C. M.; Covino, S.; Cutter, R.; D'Ammando, F.; D'Avanzo, P.; De Cesare, G.; D'Elia, V; Della Valle, M.; Denneau, L.; De Pasquale, M.; Dhillon, V. S.; Dyer, M. J.; Elias-Rosa, N.; Evans, P. A.; Eyles-Ferris, R. A. J.; Fiore, A.; Fraser, M.; Fruchter, A. S.; Fynbo, J. P. U.; Galbany, L.; Gall, C.; Galloway, D. K.; Getman, F., I; Ghirlanda, G.; Gillanders, J. H.; Gomboc, A.; Gompertz, B. P.; Gonzalez-Fernandez, C.; Gonzalez-Gaitan, S.; Grado, A.; Greco, G.; Gromadzki, M.; Groot, P. J.; Gutierrez, C. P.; Heikkila, T.; Heintz, K. E.; Hjorth, J.; Hu, Y-D; Huber, M. E.; Inserra, C.; Izzo, L.; Japelj, J.; Jerkstrand, A.; Jin, Z. P.; Jonker, P. G.; Kankare, E.; Kann, D. A.; Kennedy, M.; Kim, S.; Klose, S.; Kool, E. C.; Kotak, R.; Kuncarayakti, H.; Lamb, G. P.; Leloudas, G.; Levan, A. J.; Longo, F.; Lowe, T. B.; Lyman, J. D.; Magnier, E.; Maguire, K.; Maiorano, E.; Mandel, I; Mapelli, M.; Mattila, S.; McBrien, O. R.; Melandri, A.; Michalowski, M. J.; Milvang-Jensen, B.; Moran, S.; Nicastro, L.; Nicholl, M.; Guelbenzu, A. Nicuesa; Nuttal, L.; Oates, S. R.; O'Brien, P. T.; Onori, F.; Palazzi, E.; Patricelli, B.; Perego, A.; Torres, M. A. P.; Perley, D. A.; Pian, E.; Pignata, G.; Piranomonte, S.; Poshyachinda, S.; Possenti, A.; Pumo, M. L.; Quirola-Vasquez, J.; Ragosta, F.; Ramsay, G.; Rau, A.; Rest, A.; Reynolds, T. M.; Rosetti, S. S.; Rossi, A.; Rosswog, S.; Sabha, N. B.; Carracedo, A. Sagues; Salafia, O. S.; Salmon, L.; Salvaterra, R.; Savaglio, S.; Sbordone, L.; Schady, P.; Schipani, P.; Schultz, A. S. B.; Schweyer, T.; Smartt, S. J.; Smith, K. W.; Smith, M.; Sollerman, J.; Srivastav, S.; Stanway, E. R.; Starling, R. L. C.; Steeghs, D.; Stratta, G.; Stubbs, C. W.; Tanvir, N. R.; Testa, V; Thrane, E.; Tonry, J. L.; Turatto, M.; Ulaczyk, K.; van der Horst, A. J.; Vergani, S. D.; Walton, N. A.; Watson, D.; Wiersema, K.; Wiik, K.; Wyrzykowski, L.; Yang, S.; Yi, S-X; Young, D. R.Context. Gravitational wave (GW) astronomy has rapidly reached maturity, becoming a fundamental observing window for modern astrophysics. The coalescences of a few tens of black hole (BH) binaries have been detected, while the number of events possibly including a neutron star (NS) is still limited to a few. On 2019 August 14, the LIGO and Virgo interferometers detected a high-significance event labelled S190814bv. A preliminary analysis of the GW data suggests that the event was likely due to the merger of a compact binary system formed by a BH and a NS.Aims. In this paper, we present our extensive search campaign aimed at uncovering the potential optical and near infrared electromagnetic counterpart of S190814bv. We found no convincing electromagnetic counterpart in our data. We therefore use our non-detection to place limits on the properties of the putative outflows that could have been produced by the binary during and after the merger.Methods. Thanks to the three-detector observation of S190814bv, and given the characteristics of the signal, the LIGO and Virgo Collaborations delivered a relatively narrow localisation in low latency - a 50% (90%) credible area of 5 deg(2) (23 deg(2)) - despite the relatively large distance of 26752 Mpc. ElectromagNetic counterparts of GRAvitational wave sources at the VEry Large Telescope collaboration members carried out an intensive multi-epoch, multi-instrument observational campaign to identify the possible optical and near infrared counterpart of the event. In addition, the ATLAS, GOTO, GRAWITA-VST, Pan-STARRS, and VINROUGE projects also carried out a search on this event. In this paper, we describe the combined observational campaign of these groups.Results. Our observations allow us to place limits on the presence of any counterpart and discuss the implications for the kilonova (KN), which was possibly generated by this NS-BH merger, and for the strategy of future searches. The typical depth of our wide-field observations, which cover most of the projected sky localisation probability (up to 99.8%, depending on the night and filter considered), is r similar to 22 (resp. K similar to 21) in the optical (resp. near infrared). We reach deeper limits in a subset of our galaxy-targeted observations, which cover a total similar to 50% of the galaxy-mass-weighted localisation probability. Altogether, our observations allow us to exclude a KN with large ejecta mass M greater than or similar to 0.1 M-circle dot to a high (> 90%) confidence, and we can exclude much smaller masses in a sub-sample of our observations. This disfavours the tidal disruption of the neutron star during the merger.Conclusions. Despite the sensitive instruments involved in the campaign, given the distance of S190814bv, we could not reach sufficiently deep limits to constrain a KN comparable in luminosity to AT 2017gfo on a large fraction of the localisation probability. This suggests that future (likely common) events at a few hundred megaparsecs will be detected only by large facilities with both a high sensitivity and large field of view. Galaxy-targeted observations can reach the needed depth over a relevant portion of the localisation probability with a smaller investment of resources, but the number of galaxies to be targeted in order to get a fairly complete coverage is large, even in the case of a localisation as good as that of this event.
- ItemThe host galaxy of the short GRB 111117A at z=2.211 Impact on the short GRB redshift distribution and progenitor channels(2018) Selsing, J.; Kruehler, T.; Malesani, D.; D'Avanzo, P.; Schulze, S.; Vergani, S. D.; Palmerio, J.; Japelj, J.; Milvang-Jensen, B.; Watson, D.; Jakobsson, P.; Bolmer, J.; Cano, Z.; Covino, S.; D'Elia, V.; de Ugarte Postigo, A.; Fynbo, J. P. U.; Gomboc, A.; Heintz, K. E.; Kaper, L.; Levan, A. J.; Piranomonte, S.; Pugliese, G.; Sanchez-Ramirez, R.; Sparre, M.; Tanvir, N. R.; Thone, C. C.; Wiersema, K.It is notoriously difficult to localize short gamma-ray bursts (sGRBs) and their hosts to measure their redshifts. These measurements, however, are critical for constraining the nature of sGRB progenitors, their redshift distribution, and the r-process element enrichment history of the universe. Here we present spectroscopy of the host galaxy of GRB 111117A and measure its redshift to be z = 2.211. This makes GRB 111117A the most distant high-confidence short duration GRB detected to date. Our spectroscopic redshift supersedes a lower, previously estimated photometric redshift value for this burst. We use the spectroscopic redshift, as well as new imaging data to constrain the nature of the host galaxy and the physical parameters of the GRB. The rest-frame X-ray derived hydrogen column density, for example, is the highest compared to a complete sample of sGRBs and seems to follow the evolution with redshift as traced by the hosts of long GRBs. From the detection of Ly alpha emission in the spectrum, we are able to constrain the escape fraction of Ly alpha in the host. The host lies in the brighter end of the expected sGRB host brightness distribution at z = 2 : 211, and is actively forming stars. Using the observed sGRB host luminosity distribution, we find that between 43% and 71% of all Swift-detected sGRBs have hosts that are too faint at z similar to 2 to allow for a secure redshift determination. This implies that the measured sGRB redshift distribution could be incomplete at high redshift. The high z of GRB 111117A is evidence against a lognormal delay-time model for sGRBs through the predicted redshift distribution of sGRBs, which is very sensitive to high-z sGRBs. From the age of the universe at the time of GRB explosion, an initial neutron star (NS) separation of a(0) < 3.1 R-circle dot is required in the case where the progenitor system is a circular pair of inspiralling NSs. This constraint excludes some of the longest sGRB formation channels for this burst.
- ItemVLT/X-Shooter emission-line spectroscopy of 96 gamma-ray-burst-selected galaxies at 0.1 < z < 3.6(EDP SCIENCES S A, 2015) Kruehler, T.; Malesani, D.; Fynbo, J. P. U.; Hartoog, O. E.; Hjorth, J.; Jakobsson, P.; Perley, D. A.; Rossi, A.; Schady, P.; Schulze, S.; Tanvir, N. R.; Vergani, S. D.; Wiersema, K.; Afonso, P. M. J.; Bolmer, J.; Cano, Z.; Covino, S.; D'Elia, V.; de Ugarte Postigo, A.; Filgas, R.; Friis, M.; Graham, J. F.; Greiner, J.; Goldoni, P.; Gomboc, A.; Hammer, F.; Japelj, J.; Kann, D. A.; Kaper, L.; Klose, S.; Levan, A. J.; Leloudas, G.; Milvang Jensen, B.; Guelbenzu, A. Nicuesa; Palazzi, E.; Pian, E.; Piranomonte, S.; Sanchez Ramirez, R.; Savaglio, S.; Selsing, J.; Tagliaferri, G.; Vreeswijk, P. M.; Watson, D. J.; Xu, D.We present data and initial results from VLT/X-Shooter emission-line spectroscopy of 96 galaxies selected by long gamma-ray bursts (GRBs) at 0.1 < z < 3.6, the largest sample of GRB host spectra available to date. Most of our GRBs were detected by Swift and 76% are at 0.5 < z < 2.5 with a median z(med) similar to 1.6. Based on Balmer and/or forbidden lines of oxygen, nitrogen, and neon, we measure systemic redshifts, star formation rates (SFR), visual attenuations (A(V)), oxygen abundances (12 + log(O/H)), and emission-line widths (sigma). We study GRB hosts up to z similar to 3.5 and find a strong change in their typical physical properties with redshift. The median SFR of our GRB hosts increases from SFRmed similar to 0.6 M circle dot yr(-1) at z similar to 0.6 up to SFRmed similar to 15 M circle dot yr(-1) at z similar to 2. A higher ratio of [O III]/[O II] at higher redshifts leads to an increasing distance of GRB-selected galaxies to the locus of local galaxies in the Baldwin-Phillips-Terlevich diagram. There is weak evidence for a redshift evolution in A(V) and similar to, with the highest values seen at z similar to 1.5 (A(V)) or z similar to 2 (sigma). Oxygen abundances of the galaxies are distributed between 12 + log(O/H) = 7.9 and 12 + log(O/H) = 9.0 with a median 12 + log(O/H)(med) similar to 8.5. The fraction of GRB-selected galaxies with super-solar metallicities is similar to 20% at z < 1 in the adopted metallicity scale. This is significantly less than the fraction of total star formation in similar galaxies, illustrating that GRBs are scarce in high metallicity environments. At z similar to 3, sensitivity limits us to probing only the most luminous GRB hosts for which we derive metallicities of Z less than or similar to 0.5 Z circle dot. Together with a high incidence of Z similar to 0.5 Z circle dot galaxies at z similar to 1.5, this indicates that a metallicity dependence at low redshift will not be dominant at z similar to 3. Significant correlations exist between the hosts' physical properties. Oxygen abundance, for example, relates to A(V) (12 + log(O/H) proportional to 0.17 A(V)), line width (12 + log(O/H) proportional to sigma(0.6)), and SFR (12 + log(O/H) proportional to SFR0.2). In the last two cases, the normalization of the relations shift to lower metallicities at z > 2 by similar to 0.4 dex. These properties of GRB hosts and their evolution with redshift can be understood in a cosmological context of star-forming galaxies and a picture in which the hosts' properties at low redshift are influenced by the tendency of GRBs to avoid the most metal-rich environments.
