Browsing by Author "Inami, H."
Now showing 1 - 11 of 11
Results Per Page
Sort Options
- ItemA hard X-ray view of luminous and ultra-luminous infrared galaxies in GOALS - I. AGN obscuration along the merger sequence(2021) Ricci, C.; Privon, G. C.; Pfeifle, R. W.; Armus, L.; Iwasawa, K.; Torres-Albà, N.; Satyapal, S.; Bauer, F. E.; Treister, E.; Ho, L. C.; Aalto, S.; Arévalo, P.; Barcos-Muñoz, L.; Charmandaris, V.; Diaz-Santos, T.; Evans, A. S.; Gao, T.; Inami, H.; Koss, M. J.; Lansbury, G.; Linden, S. T.; Medling, A.; Sanders, D. B.; Song, Y.; Stern, D.; U, V.; Ueda, Y.; Yamada, S.The merger of two or more galaxies can enhance the inflow of material from galactic scales into the close environments of active galactic nuclei (AGNs), obscuring and feeding the supermassive black hole (SMBH). Both recent simulations and observations of AGN in mergers have confirmed that mergers are related to strong nuclear obscuration. However, it is still unclear how AGN obscuration evolves in the last phases of the merger process. We study a sample of 60 luminous and ultra-luminous IR galaxies (U/LIRGs) from the GOALS sample observed by NuSTAR. We find that the fraction of AGNs that are Compton thick (CT;N-H >= 10(24)cm(-2) ) peaks at at a late merger stage, prior to coalescence, when the nuclei have projected separations (d(sep)) of 0.4-6 kpc. A similar peak is also observed in the median N-H [[(1.6 +/- 0.5) x 10(24) cm(-2)].]. The vast majority (85(-9)(+7) per cent)) of the AGNs in the final merger stages (d(sep) less than or similar to 10 kpc) are heavily obscured (N-H = 10(23) cm(-2)), and the median N-H of the accreting SMBHs in our sample is systematically higher than that of local hard X-ray-selected AGN, regardless of the merger stage. This implies that these objects have very obscured nuclear environments, with the gas almost completely covering the AGN in late mergers. CT AGNs tend to have systematically higher absorption-corrected X-ray luminosities than less obscured sources. This could either be due to an evolutionary effect, with more obscured sources accreting more rapidly because they have more gas available in their surroundings, or to a selection bias. The latter scenario would imply that we are still missing a large fraction of heavily obscured, lower luminosity (L2-10 less than or similar to 10(43) erg s(-1)) AGNs in U/LIRGs.
- ItemA Herschel/PACS Far-infrared Line Emission Survey of Local Luminous Infrared Galaxies(IOP PUBLISHING LTD, 2017) Diaz Santos, T.; Armus, L.; Charmandaris, V.; Lu, N.; Stierwalt, S.; Stacey, G.; Malhotra, S.; van der Werf, P. P.; Howell, J. H.; Privon, G. C.; Mazzarella, J. M.; Goldsmith, P. F.; Murphy, E. J.; Barcos Munoz, L.; Linden, S. T.; Inami, H.; Larson, L.; Evans, A. S.; Appleton, P.; Iwasawa, K.; Lord, S.; Sanders, D. B.; Surace, J. A.We present an analysis of [O I](63), [O III](88), [N II](122), and [C II](158) far-infrared (FIR) fine-structure line observations obtained with Herschel/PACS, for similar to 240 local luminous infrared galaxies (LIRGs) in the Great Observatories All-sky LIRG Survey. We find pronounced declines ("deficits") of line-to-FIR continuum emission for [N II](122), [O I](63), and [C II](158) as a function of FIR color and infrared luminosity surface density, Sigma(IR). The median electron density of the ionized gas in LIRGs, based on the [N II](122)/[N II](205) ratio, is n(e) = 41 cm(-3). We find that the dispersion in the [C II](158) deficit of LIRGs is attributed to a varying fractional contribution of photodissociation regions (PDRs) to the observed [C II](158) emission, f ([C II](158)(PDR)) = [C II](158)(PDR)/C II](158), which increases from similar to 60% to similar to 95% in the warmest LIRGs. The [O I](63)/[C II](158)(PDR) ratio is tightly correlated with the PDR gas kinetic temperaturein sources where [O I] 63 is not optically thick or self-absorbed. For each galaxy, we derive the average PDR hydrogen density, n(H), and intensity of the interstellar radiation field, G, in units of G(0) and find G/n(H) ratios of similar to 0.1-50 G(0) cm(3), with ULIRGs populating the upper end of the distribution. There is a relation between G/n(H) and Sigma(IR), showing a critical break at Sigma(IR)* similar or equal to 5 x 10(10) L-circle dot kpc(-2). Below Sigma(IR)*, G/n(H) remains constant, similar or equal to 0.32G(0) cm(3), and variations in Sigma(IR) are driven by the number density of star-forming regions within a galaxy, with no change in their PDR properties. Above Sigma(IR)*, G/n(H) increases rapidly with Sigma(IR), signaling a departure from the typical PDR conditions found in normal star-forming galaxies toward more intense/harder radiation fields and compact geometries typical of starbursting sources.
- ItemGOODS-ALMA 2.0: Source catalog, number counts, and prevailing compact sizes in 1.1 mm galaxies(2022) Gómez-Guijarro, C.; Elbaz, D.; Xiao, M.; Béthermin, M.; Franco, M.; Magnelli, B.; Daddi, E.; Dickinson, M.; Demarco, R.; Inami, H.; Rujopakarn, W.; Magdis, G. E.; Shu, X.; Chary, R.; Zhou, L.; Alexander, D. M.; Bournaud, F.; Ciesla, L.; Ferguson, H. C.; Finkelstein, S. L.; Giavalisco, M.; Iono, D.; Juneau, S.; Kartaltepe, J. S.; Lagache, G.; Le Floc'h, E.; Leiton, R.; Lin, L.; Motohara, K.; Mullaney, J.; Okumura, K.; Pannella, M.; Papovich, C.; Pope, A.; Sargent, M. T.; Silverman, J. D.; Treister, E.; Wang, T.Submillimeter/millimeter observations of dusty star-forming galaxies with the Atacama Large Millimeter/submillimeter Array (ALMA) have shown that dust continuum emission generally occurs in compact regions smaller than the stellar distribution. However, it remains to be understood how systematic these findings are. Studies often lack homogeneity in the sample selection, target discontinuous areas with inhomogeneous sensitivities, and suffer from modest uv coverage coming from single array configurations. GOODS-ALMA is a 1.1 mm galaxy survey over a continuous area of 72.42 arcmin(2) at a homogeneous sensitivity. In this version 2.0, we present a new low resolution dataset and its combination with the previous high resolution dataset from the survey, improving the uv coverage and sensitivity reaching an average of sigma = 68.4 mu Jy beam(-1). A total of 88 galaxies are detected in a blind search (compared to 35 in the high resolution dataset alone), 50% at S/N-peak >= 5 and 50% at 3.5 <= S/N-peak <= 5 aided by priors. Among them, 13 out of the 88 are optically dark or faint sources (H- or K-band dropouts). The sample dust continuum sizes at 1.1 mm are generally compact, with a median effective radius of R-e = 0 ''.10 +/- 0 ''.5 (a physical size of R-e = 0.73 +/- 0.29 kpc at the redshift of each source). Dust continuum sizes evolve with redshift and stellar mass resembling the trends of the stellar sizes measured at optical wavelengths, albeit a lower normalization compared to those of late-type galaxies. We conclude that for sources with flux densities S-1.1mm > 1 mJy, compact dust continuum emission at 1.1 mm prevails, and sizes as extended as typical star-forming stellar disks are rare. The S-1.1mm < 1 mJy sources appear slightly more extended at 1.1 mm, although they are still generally compact below the sizes of typical star-forming stellar disks.
- ItemMassive Star Cluster Formation and Destruction in Luminous Infrared Galaxies in GOALS(IOP PUBLISHING LTD, 2017) Linden, S. T.; Evans, A. S.; Rich, J.; Larson, K. L.; Armus, L.; Diaz Santos, T.; Privon, G. C.; Howell, J.; Inami, H.; Kim, D. C.; Chien, L. H.; Vavilkin, T.; Mazzarella, J. M.; Modica, F.; Surace, J. A.; Manning, S.; Abdullah, A.; Blake, A.; Yarber, A.; Lambert, T.We present the results of a Hubble Space Telescope ACS/HRC FUV, ACS/WFC optical study into the cluster populations of a sample of 22 Luminous Infrared Galaxies in the Great Observatories All-Sky LIRG Survey. Through integrated broadband photometry, we have derived ages and masses for a total of 484 star clusters contained within these systems. This allows us to examine the properties of star clusters found in the extreme environments of LIRGs relative to lower luminosity star-forming galaxies in the local universe. We find that by adopting a Bruzual & Charlot simple stellar population model and Salpeter initial mass function, the age distribution of the clusters declines as dN/d tau = tau(-0.9+/-0.3), consistent with the age distribution derived for the Antennae Galaxies, and interpreted as evidence for rapid cluster disruption occurring in the strong tidal fields of merging galaxies. The large number of 10(6) M-circle dot young clusters identified in the sample also suggests that LIRGs are capable of producing more high-mass clusters than what is observed to date in any lower luminosity star-forming galaxy in the local universe. The observed cluster mass distribution of dN/dM = M-1.95+/-0.11 is consistent with the canonical -2 power law used to describe the underlying initial cluster mass function (ICMF) for a wide range of galactic environments. We interpret this as evidence against mass-dependent cluster disruption, which would flatten the observed CMF relative to the underlying ICMF distribution.
- ItemThe ALMA Spectroscopic Survey in the Hubble Ultra Deep Field : CO Excitation and Atomic Carbon in Star-forming Galaxies at z=1-3(2020) Boogaard, L. A.; van der Werf, P.; Weiss, A.; Popping, G.; Decarli, R.; Walter, F.; Aravena, M.; Bouwens, R.; Riechers, D.; González López, Jorge; Smail, I.; Carilli, C.; Kaasinen, M.; Daddi, E.; Cox, P.; Diaz Santos, T.; Inami, H.; Cortes, P. C.; Wagg, J.
- ItemThe ALMA Spectroscopic Survey in the Hubble Ultra Deep Field : The Nature of the Faintest Dusty Star-forming Galaxies(2020) Aravena, M.; Boogaard, L.; Gonzalez-Lopez, J.; Decarli, R.; Walter, F.; Carilli, C. L.; Smail, I.; Weiss, A.; Assef, R. J.; Bauer, Franz Erik; Bouwens, R. J.; Cortes, P. C.; Cox, P.; da Cunha, E.; Daddi, E.; Diaz Santos, T.; Inami, H.; Ivison, R.; Novak, M.; Popping, G.; Riechers, D.; van der Werf, P.; Wagg, J.
- ItemThe ALMA Spectroscopic Survey in the Hubble Ultra Deep Field: Constraining the Molecular Content at log (M-*/M-circle dot) ∼ 9.5 with CO Stacking of MUSE-detected z ∼ 1.5 Galaxies(2020) Inami, H.; Decarli, R.; Walter, F.; Weiss, A.; Carilli, C.; Aravena, M.; Boogaard, L.; González López, Jorge; Popping, G.; Bauer, Franz Erik; da Cunha, E.; Bacon, R.; Contini, T.; Cortes, P. C.; Cox, P.; Daddi, E.; Diaz Santos, T.; Kaasinen, M.; Riechers, D. A.; Wagg, J.; van der Werf, P.; Wisotzki, L.
- ItemThe ALMA Spectroscopic Survey in the HUDF : The Cosmic Dust and Gas Mass Densities in Galaxies up to z ∼ 3(2020) Magnelli, B.; Boogaard, L.; Decarli, R.; Gonzalez Lopez, J.; Novak, M.; Popping, G.; Smail, I.; Walter, F.; Aravena, M.; Bauer, Franz Erik; Assef, R. J.; Bertoldi, F.; Carilli, C.; Cortes, P. C.; da Cunha, E.; Daddi, E.; Diaz Santos, T.; Inami, H.; Ivison, R. J.; Le Fevre, O.; Oesch, P.; Riechers, D.; Rix, H. W.; Sargent, M. T.; van der Werf, P.; Wagg, J.; Weiss, A.
- ItemThe evolution of the Baryons associated with Galaxies averaged over cosmic time and space(2020) Walter, F.; Carilli, C.; Neeleman, M.; Decarli, R.; Popping, G.; Somerville, R. S.; Aravena, M.; Bertoldi, F.; Boogaard, L.; Bauer, Franz Erik; Cox, P.; Cunha, E. da; Magnelli, B.; Obreschkow, D.; Riechers, D.; Rix, H. W.; Smail, I.; Weiss, A.; Assef, R. J.; Bouwens, R.; Contini, T.; Cortés, P. C.; Daddi, E.; Díaz Santos, T.; González López, Jorge; Hennawi, J.; Hodge, J. A.; Inami, H.; Ivison, R.; Oesch, P.; Sargent, M.; Werf, P. van der; Wagg, J.; Yung, L. Y. A.
- ItemThe hidden side of cosmic star formation at z > 3 Bridging optically dark and Lyman-break galaxies with GOODS-ALMA(Wiley, 2023) Xiao, M-Y.; Elbaz, D.; Gomez-Guijarro, C.; Leroy, L.; Bing, L-J.; Daddi, E.; Magnelli, B.; Franco, M.; Zhou, L.; Dickinson, M.; Wang, T.; Rujopakarn, W.; Magdis, G. E.; Treister, Ezequiel; Inami, H.; Demarco, R.; Sargent, M. T.; Shu, X.; Kartaltepe, J. S.; Alexander, D. M.; Bethermin, M.; Bournaud, F.; Ciesla, L.; Ferguson, H. C.; Finkelstein, S. L.; Giavalisco, M.; Gu, Q-S.; Iono, D.; Juneau, S.; Lagache, G.; Leiton, R.; Messias, H.; Motohara, K.; Mullaney, J.; Nagar, N.; Pannella, M.; Papovich, C.; Pope, A.; Schreiber, C.; Silverman, J.Our current understanding of the cosmic star formation history at z > 3 is primarily based on UV-selected galaxies (Lyman-break galaxies, i.e., LBGs). Recent studies of H-dropouts (HST-dark galaxies) have revealed that we may be missing a large proportion of star formation that is taking place in massive galaxies at z > 3. In this work, we extend the H-dropout criterion to lower masses to select optically dark or faint galaxies (OFGs) at high redshifts in order to complete the census between LBGs and H-dropouts. Our criterion (H > 26.5 mag & [4.5] < 25 mag) combined with a de-blending technique is designed to select not only extremely dust-obscured massive galaxies but also normal star-forming galaxies (typically E(B - V) > 0.4) with lower stellar masses at high redshifts. In addition, with this criterion, our sample is not contaminated by massive passive or old galaxies. In total, we identified 27 OFGs at (Zphot) > 3 (with a median of z(med) = 4.1) in the GOODS-ALMA field, covering a wide distribution of stellar masses with log(M-star/M-circle dot) = 9.4-11.1 (with a median of log(M-star med/M-circle dot) = 10.3). We find that up to 75% of the OFGs with log(M-star/M-circle dot) = 9.5-10.5 were neglected by previous LBGs and H-dropout selection techniques. After performing an optical-to-millimeter stacking analysis of the OFGs, we find that rather than being limited to a rare population of extreme starbursts, these OFGs represent a normal population of dusty star-forming galaxies at z > 3. The OFGs exhibit shorter gas depletion timescales, slightly lower gas fractions, and lower dust temperatures than the scaling relation of typical star-forming galaxies. Additionally, the total star formation rate (SFRtot = SFRIR + SFRUV) of the stacked OFGs is much higher than the SFRUVcorr (SFRUV corrected for dust extinction), with an average SFRtot/SFRUVcorr = 8 +/- 1, which lies above (similar to 0.3 dex) the 16-84th percentile range of typical star-forming galaxies at 3 <= z <= 6. All of the above suggests the presence of hidden dust regions in the OFGs that absorb all UV photons, which cannot be reproduced with dust extinction corrections. The effective radius of the average dust size measured by a circular Gaussian model fit in the uv plane is R-e(1.13 mm) = 1.01 +/- 0.05 kpc. After excluding the five LBGs in the OFG sample, we investigated their contributions to the cosmic star formation rate density (SFRD). We found that the SFRD at z > 3 contributed by massive OFGs (log(M-star/M-circle dot) > 10.3) is at least two orders of magnitude higher than the one contributed by equivalently massive LBGs. Finally, we calculated the combined contribution of OFGs and LBGs to the cosmic SFRD at z = 4-5 to be 4 x 10(-2) M-circle dot yr(-1) Mpc(-3), which is about 0.15 dex (43%) higher than the SFRD derived from UV-selected samples alone at the same redshift. This value could be even larger, as our calculations were performed in a very conservative way.
- ItemThe hidden side of cosmic star formation at z > 3 Bridging optically dark and Lyman-break galaxies with GOODS-ALMA(2023) Xiao, M-Y.; Elbaz, D.; Gomez-Guijarro, C.; Leroy, L.; Bing, L-J.; Daddi, E.; Magnelli, B.; Franco, M.; Zhou, L.; Dickinson, M.; Wang, T.; Rujopakarn, W.; Magdis, G. E.; Treister, Ezequiel; Inami, H.; Demarco, R.; Sargent, M. T.; Shu, X.; Kartaltepe, J. S.; Alexander, D. M.; Bethermin, M.; Bournaud, F.; Ciesla, L.; Ferguson, H. C.; Finkelstein, S. L.; Giavalisco, M.; Gu, Q-S.; Iono, D.; Juneau, S.; Lagache, G.; Leiton, R.; Messias, H.; Motohara, K.; Mullaney, J.; Nagar, N.; Pannella, M.; Papovich, C.; Pope, A.; Schreiber, C.; Silverman, J.Our current understanding of the cosmic star formation history at z > 3 is primarily based on UV-selected galaxies (Lyman-break galaxies, i.e., LBGs). Recent studies of H-dropouts (HST-dark galaxies) have revealed that we may be missing a large proportion of star formation that is taking place in massive galaxies at z > 3. In this work, we extend the H-dropout criterion to lower masses to select optically dark or faint galaxies (OFGs) at high redshifts in order to complete the census between LBGs and H-dropouts. Our criterion (H > 26.5 mag & [4.5] < 25 mag) combined with a de-blending technique is designed to select not only extremely dust-obscured massive galaxies but also normal star-forming galaxies (typically E(B - V) > 0.4) with lower stellar masses at high redshifts. In addition, with this criterion, our sample is not contaminated by massive passive or old galaxies. In total, we identified 27 OFGs at (Zphot) > 3 (with a median of z(med) = 4.1) in the GOODS-ALMA field, covering a wide distribution of stellar masses with log(M-star/M-circle dot) = 9.4-11.1 (with a median of log(M-star med/M-circle dot) = 10.3). We find that up to 75% of the OFGs with log(M-star/M-circle dot) = 9.5-10.5 were neglected by previous LBGs and H-dropout selection techniques. After performing an optical-to-millimeter stacking analysis of the OFGs, we find that rather than being limited to a rare population of extreme starbursts, these OFGs represent a normal population of dusty star-forming galaxies at z > 3. The OFGs exhibit shorter gas depletion timescales, slightly lower gas fractions, and lower dust temperatures than the scaling relation of typical star-forming galaxies. Additionally, the total star formation rate (SFRtot = SFRIR + SFRUV) of the stacked OFGs is much higher than the SFRUVcorr (SFRUV corrected for dust extinction), with an average SFRtot/SFRUVcorr = 8 +/- 1, which lies above (similar to 0.3 dex) the 16-84th percentile range of typical star-forming galaxies at 3 <= z <= 6. All of the above suggests the presence of hidden dust regions in the OFGs that absorb all UV photons, which cannot be reproduced with dust extinction corrections. The effective radius of the average dust size measured by a circular Gaussian model fit in the uv plane is R-e(1.13 mm) = 1.01 +/- 0.05 kpc. After excluding the five LBGs in the OFG sample, we investigated their contributions to the cosmic star formation rate density (SFRD). We found that the SFRD at z > 3 contributed by massive OFGs (log(M-star/M-circle dot) > 10.3) is at least two orders of magnitude higher than the one contributed by equivalently massive LBGs. Finally, we calculated the combined contribution of OFGs and LBGs to the cosmic SFRD at z = 4-5 to be 4 x 10(-2) M-circle dot yr(-1) Mpc(-3), which is about 0.15 dex (43%) higher than the SFRD derived from UV-selected samples alone at the same redshift. This value could be even larger, as our calculations were performed in a very conservative way.