Browsing by Author "Hussein, Youssef"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- ItemClinical chorioamnionitis is characterized by changes in the expression of the alarmin HMGB1 and one of its receptors, sRAGE(TAYLOR & FRANCIS LTD, 2012) Romero, Roberto; Chaiworapongsa, Tinnakorn; Savasan, Zeynep Alpay; Hussein, Youssef; Dong, Zhong; Pedro Kusanovic, Juan; Kim, Chong Jai; Hassan, Sonia S.Objective: High mobility group box-1 (HMGB1) protein is an alarmin, a normal cell constituent, which is released into the extracellular environment upon cellular stress/damage and capable of activating inflammation and tissue repair. The receptor for advanced glycation end products (RAGE) can bind HMGB1. RAGE, in turn, can induce the production of pro-inflammatory cytokines; this may be modulated by the soluble truncated forms of RAGE, including soluble RAGE (sRAGE) and endogenous secretory RAGE (esRAGE). The objectives of this study were to determine whether: 1) clinical chorioamnionitis at term is associated with changes in amniotic fluid concentrations of HMGB1, sRAGE and esRAGE; and 2) the amniotic fluid concentration of HMGB1 changes with labor or as a function of gestational age. Methods: Amniotic fluid samples were collected from the following groups: 1) mid-trimester (n=45); 2) term with (n=48) and without labor (n=22) without intra-amniotic infection; and 3) term with clinical chorioamnionitis (n=46). Amniotic fluid concentrations of HMGB1, sRAGE and esRAGE concentrations were determined by ELISA. Results: 1) the median amniotic fluid HMGB1 concentration was higher in patients at term with clinical chorioamnionitis than in those without this condition (clinical chorioamnionitis: median 3.8 ng/mL vs. term in labor: median 1.8 ng/mL, p=0.007; and vs. term not in labor: median 1.1 ng/mL, p=0.003); 2) in contrast, patients with clinical chorioamnionitis had a lower median sRAGE concentration than those without this condition (clinical chorioamnionitis: median 9.3 ng/mL vs. term in labor: median 18.6 ng/mL, p=0.001; and vs. term not in labor median: 28.4 ng/mL, p<0.001); 3) amniotic fluid concentrations of esRAGE did not significantly change in patients with clinical chorioamnionitis at term (clinical chorioamnionitis: median 5.4 ng/mL vs. term in labor: median 6.1 ng/mL, p=0.9; and vs. term not in labor: median 9.5 ng/mL, p=0.06); and 4) there was no significant difference in the median AF HMGB1 concentration between women at term in labor and those not in labor (p=0.4) and between women in the mid-trimester and those at term not in labor (mid-trimester: median 1.5 ng/mL; p=0.2). Conclusion: An increase in the amniotic fluid HMGB1 concentration and a decrease in sRAGE were observed in clinical chorioamnionitis at term. This finding provides evidence that an alarmin, HMGB1, and one of its receptors, sRAGE, are engaged in the process of clinical chorioamnionitis at term. These changes are quite different from those observed in cases of intra-amniotic infection/inflammation in preterm gestations.
- ItemDamage-associated molecular patterns (DAMPs) in preterm labor with intact membranes and preterm PROM: a study of the alarmin HMGB1(TAYLOR & FRANCIS LTD, 2011) Romero, Roberto; Chaiworapongsa, Tinnakorn; Savasan, Zeynep Alpay; Xu, Yi; Hussein, Youssef; Dong, Zhong; Pedro Kusanovic, Juan; Kim, Chong Jai; Hassan, Sonia S.Objective: Preterm parturition is a syndrome caused by multiple etiologies. Although intra-amniotic infection is causally linked with intrauterine inflammation and the onset of preterm labor, other patients have preterm labor in the absence of demonstrable infection. It is now clear that inflammation may be elicited by activation of the Damage-Associated Molecular Patterns (DAMPs), which include pathogen-associated molecular patterns (PAMPs) as well as "alarmins" (endogenous molecules that signal tissue and cellular damage). A prototypic alarmin is high-mobility group box 1 (HMGB1) protein, capable of inducing inflammation and tissue repair when it reaches the extracellular environment. HMGB1 is a late mediator of sepsis, and blockade of HMGB1 activity reduces mortality in an animal model of endotoxemia, even if administered late during the course of the disorder. The objectives of this study were to: (1) determine whether intra-amniotic infection/inflammation (IAI) is associated with changes in amniotic fluid concentrations of HMGB1; and (2) localize immunoreactivity of HMGB1 in the fetal membranes and umbilical cord of patients with chorioamnionitis. Methods: Amniotic fluid samples were collected from the following groups: (1) preterm labor with intact membranes (PTL) with (n = 42) and without IAI (n = 84); and (2) preterm prelabor rupture of membranes (PROM) with (n = 38) and without IAI (n = 35). IAI was defined as either a positive amniotic fluid culture or amniotic fluid concentration of interleukin-6 (IL-6) >= 2.6 ng/mL. HMGB1 concentrations in amniotic fluid were determined by ELISA. Immunofluorescence staining for HMGB1 was performed in the fetal membranes and umbilical cord of pregnancies with acute chorioamnionitis. Results: (1) Amniotic fluid HMGB1 concentrations were higher in patients with IAI than in those without IAI in both the PTL and preterm PROM groups (PTL IAI: median 3.1 ng/mL vs. without IAI; median 0.98 ng/mL; p < 0.001; and preterm PROM with IAI median 7.3 ng/mL vs. without IAI median 2.6 ng/mL; p = 0.002); (2) patients with preterm PROM without IAI had a higher median amniotic fluid HMGB1 concentration than those with PTL and intact membranes without IAI (p < 0.001); and (3) HMGB1 was immunolocalized to amnion epithelial cells and stromal cells in the Wharton's jelly (prominent in the nuclei and cytoplasm). Myofibroblasts and macrophages of the chorioamniotic connective tissue layer and infiltrating neutrophils showed diffuse cytoplasmic HMGB1 immunoreactivity. Conclusions: (1) intra-amniotic infection/inflammation is associated with elevated amniotic fluid HMGB1 concentrations regardless of membrane status; (2) preterm PROM was associated with a higher amniotic fluid HMGB1 concentration than PTL with intact membranes, suggesting that rupture of membranes is associated with an elevation of alarmins; (3) immunoreactive HMGB1 was localized to amnion epithelial cells, Wharton's jelly and cells involved in the innate immune response; and (4) we propose that HMGB1 released from stress or injured cells into amniotic fluid may be responsible, in part, for intra-amniotic inflammation due to non-microbial insults.
- ItemInterleukin-19 in fetal systemic inflammation(TAYLOR & FRANCIS LTD, 2012) Savasan, Zeynep Alpay; Chaiworapongsa, Tinnakorn; Romero, Roberto; Hussein, Youssef; Kusanovic, Juan Pedro; Xu, Yi; Dong, Zhong; Kim, Chong Jai; Hassan, Sonia S.Objective: The fetal inflammatory response syndrome (FIRS) is considered the fetal counterpart of the systemic inflammatory response syndrome (SIRS), which can be caused by infection and non-infection-related insults. Although the initial response is mediated by pro-inflammatory signals, the control of this response is achieved by anti-inflammatory mediators which are essential for the successful outcome of the affected individual. Interleukin (IL)-19 is capable of stimulating the production of IL-10, a major anti-inflammatory cytokine, and is a potent inducer of the T-helper 2 (Th2) response. The aim of this study was to determine if there is a change in umbilical cord plasma IL-19 and IL-10 concentrations in preterm neonates with and without acute funisitis, the histologic counterpart of FIRS. Methods: A case-control study was conducted including 80 preterm neonates born after spontaneous labor. Neonates were classified according to the presence (n = 40) or absence of funisitis (n = 40), which is the pathologic hallmark of FIRS. Neonates in each group were also matched for gestational age. Umbilical cord plasma IL-19 and IL-10 concentrations were determined by ELISA. Results: 1) The median umbilical cord plasma IL-19 concentration was 2.5-fold higher in neonates with funisitis than in those without funisitis (median 87 pg/mL; range 20.6-412.6 pg/mL vs. median 37 pg/mL; range 0-101.7 pg/mL; p < 0.001); 2) newborns with funisitis had a significantly higher median umbilical cord plasma IL-10 concentration than those without funisitis (median 4 pg/mL; range 0-33.5 pg/mL vs. median 2 pg/mL; range 0-13.8 pg/mL; p < 0.001); and 3) the results were similar when we included only patients with funisitis who met the definition of FIRS by umbilical cord plasma IL-6 concentrations >= 17.5 pg/mL (p < 0.001). Conclusion: IL-19 and IL-10 are parts of the immunologic response of FIRS. A subset of fetuses with FIRS had high umbilical cord plasma IL-19 concentrations. In utero exposure to high systemic concentrations of IL-19 may reprogram the immune response.