Browsing by Author "Hjorth, J."
Now showing 1 - 8 of 8
Results Per Page
Sort Options
- ItemA NEW POPULATION OF ULTRA-LONG DURATION GAMMA-RAY BURSTS(IOP PUBLISHING LTD, 2014) Levan, A. J.; Tanvir, N. R.; Starling, R. L. C.; Wiersema, K.; Page, K. L.; Perley, D. A.; Schulze, S.; Wynn, G. A.; Chornock, R.; Hjorth, J.; Cenko, S. B.; Fruchter, A. S.; O'Brien, P. T.; Brown, G. C.; Tunnicliffe, R. L.; Malesani, D.; Jakobsson, P.; Watson, D.; Berger, E.; Bersier, D.; Cobb, B. E.; Covino, S.; Cucchiara, A.; de Ugarte Postigo, A.; Fox, D. B.; Gal Yam, A.; Goldoni, P.; Gorosabel, J.; Kaper, L.; Kruehler, T.; Karjalainen, R.; Osborne, J. P.; Pian, E.; Sanchez Ramirez, R.; Schmidt, B.; Skillen, I.; Tagliaferri, G.; Thoene, C.; Vaduvescu, O.; Wijers, R. A. M. J.; Zauderer, B. A.We present comprehensive multiwavelength observations of three gamma-ray bursts (GRBs) with durations of several thousand seconds. We demonstrate that these events are extragalactic transients; in particular, we resolve the long-standing conundrum of the distance of GRB 101225A (the "Christmas-day burst"), finding it to have a redshift z = 0.847 and showing that two apparently similar events (GRB 111209A and GRB 121027A) lie at z = 0.677 and z = 1.773, respectively. The systems show extremely unusual X-ray and optical light curves, very different from classical GRBs, with long-lasting, highly variable X-ray emission and optical light curves that exhibit little correlation with the behavior seen in the X-ray. Their host galaxies are faint, compact, and highly star-forming dwarf galaxies, typical of "blue compact galaxies." We propose that these bursts are the prototypes of a hitherto largely unrecognized population of ultra-long GRBs, which while observationally difficult to detect may be astrophysically relatively common. The long durations may naturally be explained by the engine-driven explosions of stars of much larger radii than normally considered for GRB progenitors, which are thought to have compact Wolf-Rayet progenitor stars. However, we cannot unambiguously identify supernova signatures within their light curves or spectra. We also consider the alternative possibility that they arise from the tidal disruption of stars by massive black holes and conclude that the associated timescales are only consistent with the disruption of compact stars (e. g., white dwarfs) by black holes of relatively low mass (<10(5) M-circle dot).
- ItemDETECTION OF THREE GAMMA-RAY BURST HOST GALAXIES AT z similar to 6(IOP PUBLISHING LTD, 2016) McGuire, J. T. W.; Tanvir, N. R.; Levan, A. J.; Trenti, M.; Stanway, E. R.; Shull, J. M.; Wiersema, K.; Perley, D. A.; Starling, R. L. C.; Bremer, M.; Stocke, J. T.; Hjorth, J.; Rhoads, J. E.; Curtis Lake, E.; Schulze, S.; Levesque, E. M.; Robertson, B.; Fynbo, J. P. U.; Ellis, R. S.; Fruchter, A. S.Long-duration gamma-ray bursts (GRBs) allow us to pinpoint and study star-forming galaxies in the early universe, thanks to their orders of magnitude brighter peak luminosities compared to other astrophysical sources, and their association with the deaths of massive stars. We present Hubble Space Telescope Wide Field Camera 3 detections of three Swift GRB host galaxies lying at redshifts z = 5.913 (GRB 130606A), z = 6.295 (GRB 050904), and z = 6.327 (GRB 140515A) in the F140W (wide-JH band, lambda(obs) similar to 1.4 mu m) filter. The hosts have magnitudes (corrected for Galactic extinction) of m(lambda obs) = 26.34(-0.16)(+0.14), 27.56(-0.22)(+0.18), and 28.30(-0.33)(+0.25) respectively. In all three cases, the probability of chance coincidence of lower redshift galaxies is less than or similar to 2%, indicating that the detected galaxies are most likely the GRB hosts. These are the first detections of high-redshift (z > 5) GRB host galaxies in emission. The galaxies have luminosities in the range 0.1-0.6 L-z=6* (with M-1600* = -20.95 +/- 0.12) and half-light radii in the range 0.6-0.9 kpc. Both their half-light radii and luminosities are consistent with existing samples of Lyman-break galaxies at z similar to 6. Spectroscopic analysis of the GRB afterglows indicate low metallicities ([M/H] less than or similar to -1) and low dust extinction (AV less than or similar to 0.1) along the line of sight. Using stellar population synthesis models, we explore the implications of each galaxy's luminosity for its possible star-formation history and consider the potential for emission line metallicity determination with the upcoming James Webb Space Telescope.
- ItemGRB 140606B/iPTF14bfu: detection of shock-breakout emission from a cosmological gamma-ray burst?(OXFORD UNIV PRESS, 2015) Cano, Zach; de Ugarte Postigo, A.; Perley, D.; Kruehler, T.; Margutti, R.; Friis, M.; Malesani, D.; Jakobsson, P.; Fynbo, J. P. U.; Gorosabel, J.; Hjorth, J.; Sanchez Ramirez, R.; Schulze, S.; Tanvir, N. R.; Thoene, C. C.; Xu, D.We present optical and near-infrared photometry of GRB 140606B (z = 0.384), and optical photometry and spectroscopy of its associated supernova (SN). The results of our modelling indicate that the bolometric properties of the SN (M-Ni = 0.4 +/- 0.2 M-circle dot, M-ej = 5 +/- 2 M-circle dot, and E-K = 2 +/- 1 x 10(52) erg) are fully consistent with the statistical averages determined for other gamma-ray burst (GRB)-SNe. However, in terms of its gamma-ray emission, GRB 140606B is an outlier of the Amati relation, and occupies the same region as low luminosity (ll) and short GRBs. The gamma-ray emission in llGRBs is thought to arise in some or all events from a shock breakout (SBO), rather than from a jet. The measured peak photon energy (E-p approximate to 800 keV) is close to that expected for. -rays created by an SBO (greater than or similar to 1 MeV). Moreover, based on its position in the M-V,M- (p)- L-iso,L-gamma plane and the E-K-Gamma eta plane, GRB 140606B has properties similar to both SBO-GRBs and jetted-GRBs. Additionally, we searched for correlations between the isotropic gamma-ray emission and the bolometric properties of a sample of GRB-SNe, finding that no statistically significant correlation is present. The average kinetic energy of the sample is (E) over bar (K) = 2.1 x 10(52) erg. All of the GRB-SNe in our sample, with the exception of SN 2006aj, are within this range, which has implications for the total energy budget available to power both the relativistic and non-relativistic components in a GRB-SN event.
- ItemThe Emergence of a Lanthanide-rich Kilonova Following the Merger of Two Neutron Stars(2017) Tanvir, N.; Levan, A.; Gonzalez Fernández, C.; Korobkin, O.; Mandel, I.; Rosswog, S.; Hjorth, J.; D'Avanzo, P.; Fruchter, A. S.; Rabus, Markus
- ItemThe supermassive black hole coincident with the luminous transient ASASSN-15lh.(2017) Krühler, Thomas; Kim, Sam; Fraser, M.; Leloudas, G.; Schulze, Steve.; Stone, N. C.; Velzen, S. van; Amorin, R.; Hjorth, J.; Jonker, P. G.; Kann, D. A.
- ItemThe swift gamma-ray burst host galaxy legacy survey. I. Sample selection and redshift distribution.(2016) Perley, Daniel A.; Kim, Sam; Krühler, Thomas; Schulze, Steve.; Ugarte Postigo, A. de; Hjorth, J.; Berger, E.; Cenko, S. B.; Chary, R.; Cucchiara, A.
- ItemTHE SWIFT GRB HOST GALAXY LEGACY SURVEY. II. REST-FRAME NEAR-IR LUMINOSITY DISTRIBUTION AND EVIDENCE FOR A NEAR-SOLAR METALLICITY THRESHOLD(IOP PUBLISHING LTD, 2016) Perley, D. A.; Tanvir, N. R.; Hjorth, J.; Laskar, T.; Berger, E.; Chary, R.; de Ugarte Postigo, A.; Fynbo, J. P. U.; Kruhler, T.; Levan, A. J.; Michalowski, M. J.; Schulze, S.We present rest-frame near-IR (NIR) luminosities and stellar masses for a large and uniformly selected population of gamma-ray burst (GRB) host galaxies using deep Spitzer Space Telescope imaging of 119 targets from the Swift GRB Host Galaxy Legacy Survey spanning 0.03 < z < 6.3, and we determine the effects of galaxy evolution and chemical enrichment on the mass distribution of the GRB host population across cosmic history. We find a rapid increase in the characteristic NIR host luminosity between z similar to 0.5 and z similar to 1.5, but little variation between z similar to 1.5 and z similar to 5. Dust-obscured GRBs dominate the massive host population but are only rarely seen associated with low-mass hosts, indicating that massive star-forming galaxies are universally and (to some extent) homogeneously dusty at high. redshift while low-mass star-forming galaxies retain little dust in their interstellar medium. Comparing our luminosity distributions with field surveys and measurements of the high-z mass-metallicity relation, our results have good consistency with a model in which the GRB rate per unit star formation is constant in galaxies with gas-phase metallicity below approximately the solar value but heavily suppressed in more metal-rich environments. This model also naturally explains the previously reported "excess" in the GRB rate beyond z greater than or similar to 2; metals stifle GRB production in most galaxies at z < 1.5 but have only minor impact at higher redshifts. The metallicity threshold we infer is much higher than predicted by single-star models and favors a binary progenitor. Our observations also constrain the fraction of cosmic star formation in low-mass galaxies undetectable to Spitzer to be small at z < 4.
- ItemVLT/X-Shooter emission-line spectroscopy of 96 gamma-ray-burst-selected galaxies at 0.1 < z < 3.6(EDP SCIENCES S A, 2015) Kruehler, T.; Malesani, D.; Fynbo, J. P. U.; Hartoog, O. E.; Hjorth, J.; Jakobsson, P.; Perley, D. A.; Rossi, A.; Schady, P.; Schulze, S.; Tanvir, N. R.; Vergani, S. D.; Wiersema, K.; Afonso, P. M. J.; Bolmer, J.; Cano, Z.; Covino, S.; D'Elia, V.; de Ugarte Postigo, A.; Filgas, R.; Friis, M.; Graham, J. F.; Greiner, J.; Goldoni, P.; Gomboc, A.; Hammer, F.; Japelj, J.; Kann, D. A.; Kaper, L.; Klose, S.; Levan, A. J.; Leloudas, G.; Milvang Jensen, B.; Guelbenzu, A. Nicuesa; Palazzi, E.; Pian, E.; Piranomonte, S.; Sanchez Ramirez, R.; Savaglio, S.; Selsing, J.; Tagliaferri, G.; Vreeswijk, P. M.; Watson, D. J.; Xu, D.We present data and initial results from VLT/X-Shooter emission-line spectroscopy of 96 galaxies selected by long gamma-ray bursts (GRBs) at 0.1 < z < 3.6, the largest sample of GRB host spectra available to date. Most of our GRBs were detected by Swift and 76% are at 0.5 < z < 2.5 with a median z(med) similar to 1.6. Based on Balmer and/or forbidden lines of oxygen, nitrogen, and neon, we measure systemic redshifts, star formation rates (SFR), visual attenuations (A(V)), oxygen abundances (12 + log(O/H)), and emission-line widths (sigma). We study GRB hosts up to z similar to 3.5 and find a strong change in their typical physical properties with redshift. The median SFR of our GRB hosts increases from SFRmed similar to 0.6 M circle dot yr(-1) at z similar to 0.6 up to SFRmed similar to 15 M circle dot yr(-1) at z similar to 2. A higher ratio of [O III]/[O II] at higher redshifts leads to an increasing distance of GRB-selected galaxies to the locus of local galaxies in the Baldwin-Phillips-Terlevich diagram. There is weak evidence for a redshift evolution in A(V) and similar to, with the highest values seen at z similar to 1.5 (A(V)) or z similar to 2 (sigma). Oxygen abundances of the galaxies are distributed between 12 + log(O/H) = 7.9 and 12 + log(O/H) = 9.0 with a median 12 + log(O/H)(med) similar to 8.5. The fraction of GRB-selected galaxies with super-solar metallicities is similar to 20% at z < 1 in the adopted metallicity scale. This is significantly less than the fraction of total star formation in similar galaxies, illustrating that GRBs are scarce in high metallicity environments. At z similar to 3, sensitivity limits us to probing only the most luminous GRB hosts for which we derive metallicities of Z less than or similar to 0.5 Z circle dot. Together with a high incidence of Z similar to 0.5 Z circle dot galaxies at z similar to 1.5, this indicates that a metallicity dependence at low redshift will not be dominant at z similar to 3. Significant correlations exist between the hosts' physical properties. Oxygen abundance, for example, relates to A(V) (12 + log(O/H) proportional to 0.17 A(V)), line width (12 + log(O/H) proportional to sigma(0.6)), and SFR (12 + log(O/H) proportional to SFR0.2). In the last two cases, the normalization of the relations shift to lower metallicities at z > 2 by similar to 0.4 dex. These properties of GRB hosts and their evolution with redshift can be understood in a cosmological context of star-forming galaxies and a picture in which the hosts' properties at low redshift are influenced by the tendency of GRBs to avoid the most metal-rich environments.