Browsing by Author "Gonzalez, G."
Now showing 1 - 4 of 4
Results Per Page
Sort Options
- ItemA probabilistic seismic hazard assessment of southern Peru and Northern Chile(2020) Das, Ranjit; Gonzalez, G.; Llera Martin, Juan Carlos de la; Sáez Robert, Esteban; Salazar, P.; Gonzalez, J.; Meneses, C.Southern Peru and northern Chile (17–30°S, 67–74°W) make up a seismically active region due to the convergence of the Nazca Plate and the South American Plate. The region has experienced a number of destructive earthquakes and tsunamis over the past few centuries, which have caused loss of human life and significant damage to infrastructure, highlighting the importance of seismic hazard assessment in the region. In fact, a reliable seismic hazard assessment is critical for developing policies for seismic hazard mitigation and risk reduction. In this study, we performed a probabilistic seismic hazard assessment (PSHA) of the study area based on an earthquake catalog that was very carefully analyzed. In earlier studies, we demonstrated that inappropriate treatment of the earthquake catalog can result in a serious bias in evaluations of seismicity parameters (e.g., a bias of up to 42% in the “b” parameter of the Gutenberg–Richter law). To address this issue, we compiled a homogenous earthquake catalog consisting of 39,977 events during the 1513–2016 period and accounted for site-specific local effects by developing site-specific scaling relationships between different measures of magnitude (e.g., mb, Ms, MD) and moment magnitude (Mw). The study area was subdivided into 15 seismogenic zones, accounting for site-specific seismicity patterns. The parameters “a” and “b” of the Gutenberg–Richter law were estimated for each zone based on independent earthquake events. The PSHA was performed using a standard logic tree approach, which allowed us to systematically take into account the model-based uncertainty and its influence on the estimated ground motion parameters. Uniform hazard spectra for return periods of 475 and 2475 years were estimated for peak ground accelerations and spectral accelerations at 0.2 s and 1.0 s to meet the definitions of seismic hazards provided by the International Building Code (IBC, International Code Council [ICC], 2009). This study is expected to provide a basis for design maps for building codes and emergency planning.
- ItemBiofilm formation by Acinetobacter baumannii(1996) Vidal, Roberto; Dominguez, M.; Urrutia, H.; Bello, H.; Gonzalez, G.; Garcia, A.; Zemelman, R.
- ItemEffect of imipenem and sulbactam on sessile cells of Acinetobacter baumannii growing in biofilm(1997) Vidal, Roberto; Dominguez, M.; Urrutia, H.; Bello, H.; Garcia, A.; Gonzalez, G.; Zemelman, R.
- ItemNature and tectonic significance of co-seismic structures associated with the Mw 8.8 Maule earthquake, central-southern Chile forearc(PERGAMON-ELSEVIER SCIENCE LTD, 2011) Arriagada, C.; Arancibia, G.; Cembrano, J.; Martinez, F.; Carrizo, D.; Van Sint Jan, M.; Saez, E.; Gonzalez, G.; Rebolledo, S.; Sepulveda, S. A.; Contreras Reyes, E.; Jensen, E.; Yanez, G.The Mw 8.8 Maule earthquake on February 27, 2010 affected the central-southern Chilean forearc of the Central Andes. Here we show the results of field investigations of surface deformation associated with this major earthquake. Observations were carried out within three weeks after the seismic event, mostly in the central and northern part of the forearc overlying the rupture zone. We provide a detailed field record of co-seismic surface deformation and examine its implications on active Andean tectonics. Surface rupture consisted primarily of extensional cracks, push-up structures, fissures with minor lateral displacements and a few but impressive extensional geometries similar to those observed in analogical modeling of rift systems. A major group of NW-WNW striking fractures representing co-seismic extensional deformation is found at all localities. These appear to be spatially correlated to long-lived basement fault zones. The NW-striking normal focal mechanism of the Mw 6.9 aftershock occurred on March 11 demonstrates that the basement faults were reactivated by the Mw 8.8 Maule earthquake. The co-seismic surface ruptures show patterns of distributed deformation similar to those observed in mapped basement-involved structures. We propose that co-seismic reactivation of basement structures play a fundamental role in stress release in the upper plate during large subduction earthquakes. The fundamental mechanism that promotes stress relaxation is largely driven by elastic rebound of the upper plate located right above the main rupture zone. (C) 2011 Elsevier Ltd. All rights reserved.