Browsing by Author "Drymoni, Kyriaki"
Now showing 1 - 6 of 6
Results Per Page
Sort Options
- ItemField analysis Vs boat-based photogrammetry derived data in volcanotectonics: an example from the Santorini dyke swarm(2020) Drymoni, Kyriaki; Bonali, Fabio Luca; Browning, John; Gudmundsson, Agust; Fallati, Luca; Antoniou, Varvara; Nomikou, ParaskeviField studies are vital for mapping and understanding active geological processes on Earth. Such studies commonly inform analogue and numerical modelling setups and provide insights over a variety of scales. However, geological field studies have several limitations as they are sensitive both to field-based conditions (e.g. weather conditions, geomorphology, weathering, erosion and access) and the experience of the researchers conducting the work. All of these limitations can add significant error or uncertainty to geological measurements. At the same time, new geological measurement techniques (e.g. photogrammetry) are easy to access, fast and friendly to use, but also often depend on ground truthing parameters.In this study, we compared two different methods for mapping and surveying volcanotectonic processes related to dyking events: classical field analysis and boat-based photogrammetry. We tested the two approaches on dykes located within a section of a steep cliff face that makes up part of the Santorini caldera. The caldera wall is accessible by land only in the upper most parts and so most measurements require access by boat or by abseiling down the cliff faces. The latter is very dangerous and not recommended.The core of the work is to carefully compare field data with the equivalents collected on photogrammetry-derived 3D model, focusing on the sea level area in order to compare reliable dataset. Data comparison is focused on dyke attitudes, thicknesses, petrological descriptions, along the 4-km length profile of the northern caldera wall of Santorini volcano.We collected a series of high-resolution images, around 800 pictures in total, aimed at 3D modelling the dyke swarm using photogrammetry methods. They have been collected using a 20 MPX hand-held camera equipped with commercial GPS from a boat, moving parallel and to a constant distance from to the caldera wall.Comparison of both datasets allowed insights into 1) the completeness and, 2) the limitations of each technique. Here we assess the various advantages to design a novel multidimensional methodology that allows fast, accurate and low-cost data generation in difficult working conditions, such as at steep cliff faces and flooded terrains.
- ItemHistorical accounts provide insight on the geological evolution of the 20th century eruptions at Santorini volcano, Greece(2023) Drymoni, Kyriaki; Browning, John; Pomonis, Panagiotis; Magganas, AndreasThe 20th century eruptions of the Santorini volcano in Greece are the most recent activity of the volcano’s long lifespan. While the different eruptions taking place between 1925 and 1950 have traditionally been considered to exhibit similar eruptive styles, aspects of their evolution and precise information related to the individual eruption dynamics were poorly constrained. This study collates field reports and historical accounts, mainly from the Greek national scientific committee, which was assigned to study the volcanic activity in Nea Kameni Island with recent field campaigns. This analysis provides further insight into these eruptions and attempts to unravel the timing and style of explosive and effusive episodes that took place. Reconstruction of the recent geological evolution and of the eruptive history allow a more complete description of the eruption dynamics and associated unrest. These include fumarolic behaviour, explosion intensity, direction and volume of the lava flows, eruption duration, vent morphological changes (such as craters, domes, and horseshoe ramparts), textural characteristics and lava morphologies, as well as surface fracturing. Specific features related to first-hand accounts of the eruptions and associated products, in conjunction with our in situ post-eruptive geological study, allow an improved reconstruction of activity, both prior to and during the historical eruptions, which contributes to understanding the development of the eruption and enhances the forecast of potential future eruptions from patterns of precursory activity.
- ItemModelling of interactions between dykes, inclined sheets and faults at Santorini volcano(2021) Drymoni, Kyriaki; Browning, John; Gudmundsson, AgustDykes and inclined sheets are known occasionally to exploit faults as parts of their paths, but the conditions that allow this to happen are still not fully understood. Here we report field observations from a well-exposed dyke swarm of the Santorini volcano, Greece, that show dykes and inclined sheets deflected into faults and the results of analytical and numerical models to explain the conditions for deflection. The deflected dykes and sheets belong to a local swarm of 91 dyke/sheet segments that was emplaced in a highly heterogeneous and anisotropic host rock and partially cut by some regional faults and a series of historic caldera collapses, the caldera walls providing, excellent exposures of the structures. The numerical models focus on a normal-fault dipping 65° with a damage zone composed of parallel layers or zones of progressively more compliant rocks with increasing distance from the fault rupture plane. We model sheet-intrusions dipping from 0˚ to 90˚ and with overpressures of alternatively 1 MPa and 5 MPa, approaching the fault. We further tested the effects of changing (1) the sheet thickness, (2) the fault-zone thickness, (3) the fault-zone dip-dimension (height), and (4) the loading by, alternatively, regional extension and compression. We find that the stiffness of the fault core, where a compliant core characterises recently active fault zones, has pronounced effects on the orientation and magnitudes of the local stresses and, thereby, on the likelihood of dyke/sheet deflection into the fault zone. Similarly, the analytical models, focusing on the fault-zone tensile strength and energy conditions for dyke/sheet deflection, indicate that dykes/sheets are most likely to be deflected into and use steeply dipping recently active (zero tensile-strength) normal faults as parts of their paths
- ItemSpatial and temporal volcanotectonic evolution of Santorini volcano, Greece(2022) Drymoni, Kyriaki; Browning, John; Gudmundsson, AgustVolcanic and tectonic activities in the Aegean region have controlled the evolution of Santorini volcano, including changes in the shape and size of the island through time. Previous studies associate much of the island’s volcanic activity with the presence of regional faults, but a comprehensive volcanotectonic study that clarifies the relationship between dyking and faulting in the island has not been made. Here we present a detailed structural analysis focused on the northern caldera wall of Santorini, where numerous dykes and faults outcrop and can be studied in the mesoscale. To augment our discussion of dyke and fault interactions, we combine previous volcanological and geophysical observations with our structural analysis to report the volcanotectonic evolution of the northern part of the island and design a conceptual spatial-temporal model. We mapped 91 dyke segments and 15 faults and classified the latter, where possible, with respect to their observed or recorded kinematics, their size, and the active stress field under which they were formed based on prior geophysical data. We relate our observations to a mechanical unconformity within the northern caldera wall. Our field observations, coupled with previous numerical, geophysical, and volcanological studies, offer insights on the interaction between dykes and faults and indicate the conditions under which the faults facilitated magma emplacement, or not, during the volcano’s activity. Our analysis attempts to answer an essential question: under what conditions do crustal faults facilitate or inhibit magma propagation to the surface, with application to the island of Santorini
- ItemVolcanotectonic interactions between inclined sheets, dykes, and faults at the Santorini Volcano, Greece(2021) Drymoni, Kyriaki; Browning, John; Gudmundsson, AgustDykes and inclined sheets are known occasionally to exploit faults as parts of their paths, but the conditions that allow this to happen are still not fully understood. In this paper, we report field observations from a swarm composed of 91 segments of dykes and inclined sheets, the swarm being particularly well-exposed in the mechanically layered caldera walls of the Santorini volcano, Greece. Here the focus is on dykes and sheets in the swarm that are seen deflected into faults and the mechanical conditions that encourage such deflections. In particular, we present new analytical and numerical models to explain the mechanical principles of dyke/sheet deflections into faults. The numerical models are applied to a normal-fault dipping 65° with a damage zone composed of parallel layers or zones of progressively stiffer rocks with increasing distance from the fault rupture plane. We model a sheet-intrusion, dipping from 0° to 90° and with an overpressure of alternatively 1 MPa and 5 MPa, approaching the fault. We further tested the effects of changing (1) the thickness of the sheet-intrusion, (2) the fault-zone thickness, (3) the fault-zone dip-dimension (height), and (4) the loading by, alternatively, regional tension and compression. We find that the stiffness of the fault core, where a compliant core characterises recently active fault zones, has pronounced effects on the orientation and magnitudes of the local stresses and, thereby, on the likelihood of dyke/sheet deflection into the fault zone. Similarly, the analytical models, focusing on the fault-zone tensile strength and energy conditions for dyke/sheet deflection, indicate that dykes/sheets are most likely to be deflected into and use steeply dipping recently active (zero tensile-strength) normal faults as parts of their paths.
- ItemVolcanotectonics: the tectonics and physics of volcanoes and their eruption mechanics(2022) Gudmundsson, Agust; Drymoni, Kyriaki; Browning, John; Acocella, Valerio; Amelung, Falk; Bonali, Fabio L.; Elshaafi, Abdelsalam; Galindo, Ines; Geshi, Nobuo; Geyer, Adelina; Heap, Michael J.; Karaoğlu, Özgür; Kusumoto, Shigekazu; Marti, Joa; Pinel, Virginie; Tibaldi, Alessandro; Thordarson, Thorvaldur; Walter, Thomas R.The physical processes that operate within, and beneath, a volcano control the frequency, duration, location and size of volcanic eruptions. Volcanotectonics focuses on such processes, combining techniques, data, and ideas from structural geology, tectonics, volcano deformation, physical volcanology, seismology, petrology, rock and fracture mechanics and classical physics. A central aim of volcanotectonics is to provide sufficient understanding of the internal processes in volcanoes so that, when combined with monitoring data, reliable forecasting of eruptions, vertical (caldera) and lateral (landslide) collapses and related events becomes possible. To gain such an understanding requires knowledge of the material properties of the magma and the crustal rocks, as well as the associated stress fields, and their evolution. The local stress field depends on the properties of the layers that constitute the volcano and, in particular, the geometric development of its shallow magma chamber. During this decade an increasing use of data from InSAR, pixel offset and structure-from-motion, as well as dense, portable seismic networks will provide further details on the mechanisms of volcanic unrest, magma-chamber rupture, the propagation of magma-filled fractures (dikes, inclined sheets and sills) and lateral and vertical collapse. Additionally, more use will be made of accurate quantitative data from fossil and active volcanoes, combined with realistic numerical, analytical and machine-learning studies, so as to provide reliable models on volcano behaviour and eruption forecasting.