Browsing by Author "Carvallo de Ferari, Andrés Francisco"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
- ItemInteractive and explainable machine learning to improve efficiency in medical document screening(2022) Carvallo de Ferari, Andrés Francisco; Parra Santander, Denis; Pontificia Universidad Católica de Chile. Escuela de IngenieríaLa revisión de documentos es fundamental en Medicina Basada en Evidencia (MBE) ya que busca validar evidencia científica para respaldar decisiones clínicas. Esta tesis propone una solución a la sobrecarga de información basada en active learning que busca reducir la cantidad de documentos que los médicos deben etiquetar para responder preguntas clínicas. Además, en el contexto de la pandemia COVID-19 la cantidad de artículos indexados creció exponencialmente, proponemos estrategias de sampleo de evidencia para hacer finetuning de un modelo con una pequeña proporción de toda la evidencia existente. Finalmente, mediante un estudio de usuario evaluamos si las atenciones aprendidas por un modelo basado en transformer son percibidas como útiles y si existe alguna forma mejor para visualizarlas. Con respecto a Active Learning los resultados indican que el muestro basado en incerteza combinado con representación BioBERT y un Random Forest supera a otros enfoques propuestos. Respecto a la clasificación de artículos de COVID-19, obtuvimos que el modelo XLNET supera a otros modelos del estado del arte y demostramos que podemos ahorrar más del 65% de la carga de trabajo de los expertos utilizando una estrategia de muestreo basado incerteza. Finalmente, los resultados del estudio de usuario indican que, en general, las atenciones no son percibidas como útiles para los usuarios como una forma de explicación. Sin embargo, observamos un efecto de interacción entre el encoding visual y el tipo de artículo con respecto a la percepción de utilidad de las atenciones. Además obtuvimos que los usuarios que visualizan las atenciones tienen una efectividad de un 5.27% mayor comparado a aquellos que no utilizan visualización.