Browsing by Author "Cancino, Jorge"
Now showing 1 - 15 of 15
Results Per Page
Sort Options
- ItemA single bout of resistance exercise triggers mitophagy, potentially involving the ejection of mitochondria in human skeletal muscle(2024) Diaz-Castro, Francisco; Tunon-Suarez, Mauro; Rivera, Patricia; Botella, Javier; Cancino, Jorge; Figueroa, Ana Maria; Gutierrez, Juan; Cantin, Claudette; Deldicque, Louise; Zbinden-Foncea, Hermann; Nielsen, Joachim; Henriquez-Olguin, Carlos; Morselli, Eugenia; Castro-Sepulveda, MauricioAimThe present study aimed to investigate the effects of a single bout of resistance exercise on mitophagy in human skeletal muscle (SkM).MethodsEight healthy men were recruited to complete an acute bout of one-leg resistance exercise. SkM biopsies were obtained one hour after exercise in the resting leg (Rest-leg) and the contracting leg (Ex-leg). Mitophagy was assessed using protein-related abundance, transmission electron microscopy (TEM), and fluorescence microscopy.ResultsOur results show that acute resistance exercise increased pro-fission protein phosphorylation (DRP1Ser616) and decreased mitophagy markers such as PARKIN and BNIP3L/NIX protein abundance in the Ex-leg. Additionally, mitochondrial complex IV decreased in the Ex-leg when compared to the Rest-leg. In the Ex-leg, TEM and immunofluorescence images showed mitochondrial cristae abnormalities, a mitochondrial fission phenotype, and increased mitophagosome-like structures in both subsarcolemmal and intermyofibrillar mitochondria. We also observed increased mitophagosome-like structures on the subsarcolemmal cleft and mitochondria in the extracellular space of SkM in the Ex-leg. We stimulated human primary myotubes with CCCP, which mimics mitophagy induction in the Ex-leg, and found that BNIP3L/NIX protein abundance decreased independently of lysosomal degradation. Finally, in another human cohort, we found a negative association between BNIP3L/NIX protein abundance with both mitophagosome-like structures and mitochondrial cristae density in the SkM.ConclusionThe findings suggest that a single bout of resistance exercise can initiate mitophagy, potentially involving mitochondrial ejection, in human skeletal muscle. BNIP3L/NIX is proposed as a sensitive marker for assessing mitophagy flux in SkM.
- ItemAntibody to AP1B adaptor blocks biosynthetic and recycling routes of basolateral proteins at recycling endosomes(AMER SOC CELL BIOLOGY, 2007) Cancino, Jorge; Torrealba, Carolina; Soza, Andrea; Yuseff, Maria Isabel; Gravotta, Diego; Henklein, Peter; Rodriguez Boulan, Enrique; Gonzalez, AlfonsoThe epithelial-specific adaptor AP1B sorts basolateral plasma membrane (PM) proteins in both biosynthetic and recycling routes, but the site where it carries out this function remains incompletely defined. Here, we have investigated this topic in Fischer rat thyroid (FRT) epithelial cells using an antibody against the medium subunit mu 1B. This antibody was suitable for immunofluorescence and blocked the function of AP1B in these cells. The antibody blocked the basolateral recycling of two basolateral PM markers, Transferrin receptor (TfR) and LDL receptor (LDLR), in a perinuclear compartment with marker and functional characteristics of recycling endosomes (RE). Live imaging experiments demonstrated that in the presence of the antibody two newly synthesized GFP-tagged basolateral proteins (vesicular stomatitis virus G [VSVG] protein and TfR) exited the trans-Golgi network (TGN) normally but became blocked at the RE within 3-5 min. By contrast, the antibody did not block trafficking of green fluorescent protein (GFP)-LDLR from the TGN to the PM but stopped its recycling after internalization into RE in similar to 45 min. Our experiments conclusively demonstrate that 1) AP1B functions exclusively at RE; 2) TGN-to-RE transport is very fast and selective and is mediated by adaptors different from AP1B; and 3) the TGN and AP1B-containing RE cooperate in biosynthetic basolateral sorting.
- ItemBasal Serum Cortisol and Testosterone/Cortisol Ratio Are Related to Rate of Na+ Lost During Exercise in Elite Soccer Players(2019) Castro Sepúlveda, Mauricio; Cancino, Jorge; Fernández Verdejo, Rodrigo; Pérez Luco, Cristián; Jannas Vela, Sebastian; Ramírez Campillo, Rodrigo; Del Coso, Juan; Zbinden Foncea, Hermann
- ItemD-Propranolol Impairs EGFR Trafficking and Destabilizes Mutant p53 Counteracting AKT Signaling and Tumor Malignancy(2021) Barra, Jonathan; Cerda-Infante, Javier; Sandoval, Lisette; Gajardo-Meneses, Patricia; Henriquez, Jenny F.; Labarca, Mariana; Metz, Claudia; Venegas, Jaime; Retamal, Claudio; Oyanadel, Claudia; Cancino, Jorge; Soza, Andrea; Cuello, Mauricio A.; Carlos Roa, Juan; Montecinos, Viviana P.; Gonzalez, AlfonsoSimple Summary Cancer progression is frequently driven by altered functions of EGFR belonging to the tyrosine-kinase family of growth factor receptors and by the transcription factor p53, which is called the "genome guardian". We report that D-Propranolol, previously used for other purposes in human patients, has antitumor effects involving a redistribution of cell surface EGFR to intracellular compartments and degradation of gain-of-function mutants of p53 (GOF-mutp53). These effects can be seen in cancer cell lines expressing EGFR and GOF-mutp53 and are reproduced in vivo, reducing tumor growth and prolonging survival of xenografted mice. D-Propranolol is proposed as a prototype drug for a new strategy against highly aggressive EGFR- and mutp53-expressing tumors. Cancer therapy may be improved by the simultaneous interference of two or more oncogenic pathways contributing to tumor progression and aggressiveness, such as EGFR and p53. Tumor cells expressing gain-of-function (GOF) mutants of p53 (mutp53) are usually resistant to EGFR inhibitors and display invasive migration and AKT-mediated survival associated with enhanced EGFR recycling. D-Propranolol (D-Prop), the non-beta blocker enantiomer of propranolol, was previously shown to induce EGFR internalization through a PKA inhibitory pathway that blocks the recycling of the receptor. Here, we first show that D-Prop decreases the levels of EGFR at the surface of GOF mutp53 cells, relocating the receptor towards recycling endosomes, both in the absence of ligand and during stimulation with high concentrations of EGF or TGF-alpha. D-Prop also inactivates AKT signaling and reduces the invasive migration and viability of these mutp53 cells. Unexpectedly, mutp53 protein, which is stabilized by interaction with the chaperone HSP90 and mediates cell oncogenic addiction, becomes destabilized after D-Prop treatment. HSP90 phosphorylation by PKA and its interaction with mutp53 are decreased by D-Prop, releasing mutp53 towards proteasomal degradation. Furthermore, a single daily dose of D-Prop reproduces most of these effects in xenografts of aggressive gallbladder cancerous G-415 cells expressing GOF R282W mutp53, resulting in reduced tumor growth and extended mice survival. D-Prop then emerges as an old drug endowed with a novel therapeutic potential against EGFR- and mutp53-driven tumor traits that are common to a large variety of cancers.
- ItemEffects of a resistance training routine applied to patients with chronic kidney disease during hemodialysis(2023) Araya, A. Veronica; Bezanilla, Carmen Gloria; Figueroa, Marisel; Pino, Johanna; Cancino, Jorge; Mackenney, BernarditaIn patients in chronic hemodialysis (CH), aerobic and resistance exercises have been shown to improve fitness, metabolic and cardiovascular parameters.Objective: to evaluate in patients in CH, the impact of a resistance training routine on muscle strength, quality of life and metabolic parameters. Patients and method: thirty one patients from the dialysis unit performed a routine of dynamic and static progressive resistance training for lower body and abdomen, and low-load aerobics with a pedal board in 45 minute sessions, 3 sessions/week for 20 weeks. Weight, glycemia, lipids, 6-minute walk test and SF36 quality of life questionnaire were measured at the beginning and at the end. In seven patients, knee extensor strength was evaluated by means of the maximum voluntary contraction. The Borg scale was used to evaluate load progression.Results: nineteen patients (11M/8F), completed 47 +/- 6.4 sessions. There were no significant differences between baseline and final measurements for the evaluated parameters. The Borg scale increased significantly at weeks 10 (p< 0.05) and 20 (p< 0.01) compared to baseline, indicating that the perception of exercise intensity increased in accordance with increases in intensity in the exercise routines. In 5/8 patients, an increase over 30 meters in the 6-minute walk test was observed. Conclusion: although this exercise routine did not statistically determine significant changes in the evaluated parameters, the increase in walk capacity in some patients is relevant. More studies are needed to establish the type of exercise routine that will benefit these patients.
- ItemEstimation of ventilatory thresholds during exercise using respiratory wearable sensors(2024) Contreras Briceño, Felipe; Cancino, Jorge; Espinosa Ramírez, Maximiliano Andrés; Fernández, Gonzalo; Johnson, Vader; Lopez Hurtado Daniel EduardoVentilatory thresholds (VTs) are key physiological parameters used to evaluate physical performanceand determine aerobic and anaerobic transitions during exercise. Current assessment of theseparameters requires ergospirometry, limiting evaluation to laboratory or clinical settings. In this work,we introduce a wearable respiratory system that continuously tracks breathing during exercise andestimates VTs during ramp tests. We validate the respiratory rate and VTs predictions in 17 healthyadults using ergospirometry analysis. In addition, we use the wearable system to evaluate VTs in 107recreational athletes during ramp tests outside the laboratory and show that the mean populationvalues agree with physiological variables traditionally used to exercise prescription. We envision thatrespiratory wearables can be useful in determining aerobic and anaerobic parameters with promisingapplications in health telemonitoring and human performance
- ItemGOLPH3 Regulates EGFR in T98G Glioblastoma Cells by Modulating Its Glycosylation and Ubiquitylation(2020) Arriagada, Cecilia; Cavieres, Viviana A.; Luchsinger, Charlotte; Gonzalez, Alexis E.; Munoz, Vanessa C.; Cancino, Jorge; Burgos, Patricia, V; Mardones, Gonzalo A.Protein trafficking is altered when normal cells acquire a tumor phenotype. A key subcellular compartment in regulating protein trafficking is the Golgi apparatus, but its role in carcinogenesis is still not well defined. Golgi phosphoprotein 3 (GOLPH3), a peripheral membrane protein mostly localized at the trans-Golgi network, is overexpressed in several tumor types including glioblastoma multiforme (GBM), the most lethal primary brain tumor. Moreover, GOLPH3 is currently considered an oncoprotein, however its precise function in GBM is not fully understood. Here, we analyzed in T98G cells of GBM, which express high levels of epidermal growth factor receptor (EGFR), the effect of stable RNAi-mediated knockdown of GOLPH3. We found that silencing GOLPH3 caused a significant reduction in the proliferation of T98G cells and an unexpected increase in total EGFR levels, even at the cell surface, which was however less prone to ligand-induced autophosphorylation. Furthermore, silencing GOLPH3 decreased EGFR sialylation and fucosylation, which correlated with delayed ligand-induced EGFR downregulation and its accumulation at endo-lysosomal compartments. Finally, we found that EGF failed at promoting EGFR ubiquitylation when the levels of GOLPH3 were reduced. Altogether, our results show that GOLPH3 in T98G cells regulates the endocytic trafficking and activation of EGFR likely by affecting its extent of glycosylation and ubiquitylation.
- ItemKDEL receptor regulates secretion by lysosome relocation- and autophagy-dependent modulation of lipid-droplet turnover(2019) Tapia, Diego; Zamora, Constanza; Espinoza, Javier; Rizzo, Riccardo; González Cárdenas, Alexis; Fuentes Peña, Danitza Natalia; Hernández, Sergio; Cavieres, Viviana A.; Guzmán, Fanny; Arriagada, Gloria; Yuseff Sepúlveda, María Isabel; Mardones, Gonzalo A.; Burgos , Patricia V.; Luini, Alberto; González, Alfonso; Cancino, Jorge; Jiménez, Tomás; Soza Gajardo, Andrea
- ItemLack of canonical activities of connexins in highly aggressive human prostate cancer cells(2024) Asencio Barría, Catalina Andrea; Véliz García, Loreto Pamela; Flores-Faúndez, Emilia; Azócar, Lorena; Echeverría, Carolina E.; Torres Estay, Verónica; Orellana, Viviana; Ramírez Santelices, Catalina; Sotomayor Fahrenkrog, Paula Camila Stefanía; Cancino, Jorge; Kerr, Bredford; Fernandez-Olivares, Ainoa; Retamal, Mauricio A.; Sáez, Juan C.; Godoy, Alejandro S.Abstract Connexins (Cxs) have the ability to form channels that allow the exchange of ions/metabolites between adjacent cells (gap junction channels, GJC) or between the intra- and extra-cellular compartments (hemichannels, HC). Cxs were initially classified as tumor suppressors. However, more recently, it has been shown that Cxs exert anti- and pro-tumorigenic effects depending on the cell and tissue context. In prostate cancer (PCa), the expression and functionality of Cxs remain highly controversial. Here, we analyzed the expression pattern of Cx26, Cx32, Cx37, Cx40, Cx43 and Cx45 in PCa cell lines with increasing levels of tumor aggressiveness (LNCaP < LNCaP-C4-2 < Du-145 < PC-3). In addition, GJ and HC activities were evaluated in the PCa cell lines using dye coupling and dye uptake assays, respectively. Lastly, the cellular localization of Cx26, Cx32, and Cx43 was analyzed in LNCaP and PC-3 cell lines using immunofluorescence analyses. Our results showed a positive association between the mRNA levels of Cx26, Cx37 and Cx45 and the degree of aggressiveness of PCa cells, a negative association in the case of Cx32 and Cx43, and no clear pattern for Cx40. At the protein level, a negative relationship between the expression of Cx26, Cx32 and Cx43 and the degree of aggressiveness of PCa cell lines was observed. No significant differences were observed for the expression of Cx37, Cx40, and Cx45 in PCa cell lines. At the functional level, only LNCaP cells showed moderate GJ activity and LNCaP and LNCaP-C4-2 cells showed HC activity. Immunofluorescence analyses confirmed that the majority of Cx26, Cx32, and Cx43 expression was localized in the cytoplasm of both LNCaP and PC3 cell lines. This data indicated that GJ and HC activities were moderately detected only in the less aggressive PCa cells, which suggest that Cxs expression in highly aggressive PCa cells could be associated to channel-independent roles.
- ItemNegative Modulation of Macroautophagy by Stabilized HERPUD1 is Counteracted by an Increased ER-Lysosomal Network With Impact in Drug-Induced Stress Cell Survival(2022) Vargas, Gabriela; Cortes, Omar; Arias-Munoz, Eloisa; Hernandez, Sergio; Cerda-Troncoso, Cristobal; Hernandez, Laura; Gonzalez, Alexis E.; Tatham, Michael H.; Bustamante, Hianara A.; Retamal, Claudio; Cancino, Jorge; Varas-Godoy, Manuel; Hay, Ronald T.; Rojas-Fernandez, Alejandro; Cavieres, Viviana A.; Burgos, Patricia V.Macroautophagy and the ubiquitin proteasome system work as an interconnected network in the maintenance of cellular homeostasis. Indeed, efficient activation of macroautophagy upon nutritional deprivation is sustained by degradation of preexisting proteins by the proteasome. However, the specific substrates that are degraded by the proteasome in order to activate macroautophagy are currently unknown. By quantitative proteomic analysis we identified several proteins downregulated in response to starvation independently of ATG5 expression. Among them, the most significant was HERPUD1, an ER membrane protein with low expression and known to be degraded by the proteasome under normal conditions. Contrary, under ER stress, levels of HERPUD1 increased rapidly due to a blockage in its proteasomal degradation. Thus, we explored whether HERPUD1 stability could work as a negative regulator of autophagy. In this work, we expressed a version of HERPUD1 with its ubiquitin-like domain (UBL) deleted, which is known to be crucial for its proteasome degradation. In comparison to HERPUD1-WT, we found the UBL-deleted version caused a negative role on basal and induced macroautophagy. Unexpectedly, we found stabilized HERPUD1 promotes ER remodeling independent of unfolded protein response activation observing an increase in stacked-tubular structures resembling previously described tubular ER rearrangements. Importantly, a phosphomimetic S59D mutation within the UBL mimics the phenotype observed with the UBL-deleted version including an increase in HERPUD1 stability and ER remodeling together with a negative role on autophagy. Moreover, we found UBL-deleted version and HERPUD1-S59D trigger an increase in cellular size, whereas HERPUD1-S59D also causes an increased in nuclear size. Interestingly, ER remodeling by the deletion of the UBL and the phosphomimetic S59D version led to an increase in the number and function of lysosomes. In addition, the UBL-deleted version and phosphomimetic S59D version established a tight ER-lysosomal network with the presence of extended patches of ER-lysosomal membrane-contact sites condition that reveals an increase of cell survival under stress conditions. Altogether, we propose stabilized HERPUD1 downregulates macroautophagy favoring instead a closed interplay between the ER and lysosomes with consequences in drug-cell stress survival.
- ItemPex3p-Dependent Peroxisomal Biogenesis Initiates in the Endoplasmic Reticulum of Human Fibroblasts(WILEY-BLACKWELL, 2009) Toro, Andres A.; Araya, Claudia A.; Cordova, Gonzalo J.; Arredondo, Cristian A.; Cardenas, Hugo G.; Moreno, Regina E.; Venegas, Alejandro; Koenig, Cecilia S.; Cancino, Jorge; Gonzalez, Alfonso; Santos, Manuel J.The mechanisms of peroxisomal biogenesis remain incompletely understood, specially regarding the role of the endoplasmic reticulum (ER) in human cells, where genetic disorders of peroxisome biogenesis lead to Zellweger syndrome (ZS). The Pex3p peroxisomal membrane protein (PMP) required for early steps of peroxisome biogenesis has been detected in the ER in yeast but not in mammalian cells. Here, we show that Pex3p-GFP expressed in a new ZS cell line (MR), which lacks peroxisomes due to a mutation in the PEX3 gene, localizes first in the ER and subsequently in newly formed peroxisomes. Pex3p bearing an artificial N-glycosylation site shows an electrophoretic shift indicative of ER targeting while en route to preformed peroxisomes in normal fibroblast. A signal peptide that forces its entry into the ER does not eliminate its capability to drive peroxisome biogenesis in ZS cells. Thus, Pex3p is able to drive peroxisome biogenesis from the ER and its ER pathway is not privative of ZS cells. Cross-expression experiments of Pex3p in GM623 cells lacking Pex16p or Pex16p in MR cells lacking Pex3p, showed evidence that Pex3p requires Pex16p for ER location but: is dispensable for the ER location of Pex16p. These results indicate that Pex3p follows the ER-to-peroxisomal route in mammalian cells and provides new clues to understand its function. J. Cell. Biochem. 107: 10831096, 2009. (C) 2009 Wiley-Liss, Inc.
- ItemPhosphatidic Acid Induces Ligand-independent Epidermal Growth Factor Receptor Endocytic Traffic through PDE4 Activation(AMER SOC CELL BIOLOGY, 2010) Norambuena, Andres; Metz, Claudia; Jung, Juan E.; Silva, Antonia; Otero, Carolina; Cancino, Jorge; Retamal, Claudio; Valenzuela, Juan C.; Soza, Andrea; Gonzalez, AlfonsoEndocytosis modulates EGFR function by compartmentalizing and attenuating or enhancing its ligand-induced signaling. Here we show that it can also control the cell surface versus intracellular distribution of empty/inactive EGFR. Our previous observation that PKA inhibitors induce EGFR internalization prompted us to test phosphatidic acid (PA) generated by phospholipase D (PLD) as an endogenous down-regulator of PKA activity, which activates rolipram-sensitive type 4 phosphodiesterases (PDE4) that degrade cAMP. We found that inhibition of PA hydrolysis by propranolol, in the absence of ligand, provokes internalization of inactive (neither tyrosine-phosphorylated nor ubiquitinated) EGFR, accompanied by a transient increase in PA levels and PDE4s activity. This EGFR internalization is mimicked by PA micelles and is strongly counteracted by PLD2 silencing, rolipram or forskolin treatment, and PKA overexpression. Accelerated EGFR endocytosis seems to be mediated by clathrin-dependent and -independent pathways, leading to receptor accumulation in juxtanuclear recycling endosomes, also due to a decreased recycling. Internalized EGFR can remain intracellular without degradation for several hours or return rapidly to the cell surface upon discontinuation of the stimulus. This novel regulatory mechanism of EGFR, also novel function of signaling PA, can transmodulate receptor accessibility in response to heterologous stimuli.
- ItemPhosphatidic acid-PKA signaling regulates p38 and ERK1/2 functions in ligand-independent EGFR endocytosis(2021) Metz, Claudia; Oyanadel, Claudia; Jung, Juan; Retamal, Claudio; Cancino, Jorge; Barra, Jonathan; Venegas, Jaime; Du, Guangwei; Soza, Andrea; Gonzalez, AlfonsoLigand-independent epidermal growth factor receptor (EGFR) endocytosis is inducible by a variety of stress conditions converging upon p38 kinase. A less known pathway involves phosphatidic acid (PA) signaling toward the activation of type 4 phosphodiesterases (PDE4) that decrease cAMP levels and protein kinase A (PKA) activity. This PA/PDE4/PKA pathway is triggered with propranolol used to inhibit PA hydrolysis and induces clathrin-dependent and clathrin-independent endocytosis, followed by reversible accumulation of EGFR in recycling endosomes. Here we give further evidence of this signaling pathway using biosensors of PA, cAMP, and PKA in live cells and then show that it activates p38 and ERK1/2 downstream the PKA inhibition. Clathrin-silencing and IN/SUR experiments involved the activity of p38 in the clathrin-dependent route, while ERK1/2 mediates clathrin-independent EGFR endocytosis. The PA/PDE4/PKA pathway selectively increases the EGFR endocytic rate without affecting LDLR and TfR constitute endocytosis. This selectiveness is probably because of EGFR phosphorylation, as detected in Th1046/1047 and Ser669 residues. The EGFR accumulates at perinuclear recycling endosomes colocalizing with TfR, fluorescent transferrin, and Rab11, while a small proportion distributes to Alix-endosomes. A non-selective recycling arrest includes LDLR and TfR in a reversible manner. The PA/PDE4/PKA pathway involving both p38 and ERK1/2 expands the possibilities of EGFR transmodulation and interference in cancer.
- ItemThe Proteasomal Deubiquitinating Enzyme PSMD14 Regulates Macroautophagy by Controlling Golgi-to-ER Retrograde Transport(2020) Bustamante, Hianara A.; Cereceda, Karina; Gonzalez, Alexis E.; Valenzuela, Guillermo E.; Cheuquemilla, Yorka; Hernandez, Sergio; Arias-Munoz, Eloisa; Cerda-Troncoso, Cristobal; Bandau, Susanne; Soza, Andrea; Kausel, Gudrun; Kerr, Bredford; Mardones, Gonzalo A.; Cancino, Jorge; Hay, Ronald T.; Rojas-Fernandez, Alejandro; Burgos, Patricia, VUbiquitination regulates several biological processes, however the role of specific members of the ubiquitinome on intracellular membrane trafficking is not yet fully understood. Here, we search for ubiquitin-related genes implicated in protein membrane trafficking performing a High-Content siRNA Screening including 1187 genes of the human "ubiquitinome" using amyloid precursor protein (APP) as a reporter. We identified the deubiquitinating enzyme PSMD14, a subunit of the 19S regulatory particle of the proteasome, specific for K63-Ub chains in cells, as a novel regulator of Golgi-to-endoplasmic reticulum (ER) retrograde transport. Silencing or pharmacological inhibition of PSMD14 with Capzimin (CZM) caused a robust increase in APP levels at the Golgi apparatus and the swelling of this organelle. We showed that this phenotype is the result of rapid inhibition of Golgi-to-ER retrograde transport, a pathway implicated in the early steps of the autophagosomal formation. Indeed, we observed that inhibition of PSMD14 with CZM acts as a potent blocker of macroautophagy by a mechanism related to the retention of Atg9A and Rab1A at the Golgi apparatus. As pharmacological inhibition of the proteolytic core of the 20S proteasome did not recapitulate these effects, we concluded that PSMD14, and the K63-Ub chains, act as a crucial regulatory factor for macroautophagy by controlling Golgi-to-ER retrograde transport.
- ItemTNF-α-activated eNOS signaling increases leukocyte adhesion through the S- nitrosylation pathway(2021) Aguilar, Gaynor; Cordova, Francisco; Koning, Tania; Sarmiento, Jose; Boric, Mauricio P.; Birukov, Konstantin; Cancino, Jorge; Varas-Godoy, Manuel; Soza, Andrea; Alves, Natascha G.; Mujica, Patricio E.; Duran, Walter N.; Ehrenfeld, Pamela; Sanchez, Fabiola A.Nitric oxide ( NO) is a key factor in inflammation. Endothelial nitric oxide synthase (eNOS), whose activity increases after stimulation with proinflammatory cytokines, produces NO in endothelium. NO activates two pathways: 1) soluble guanylate cyclase-protein kinase G and 2) S-nitrosylation (NO-induced modification of free-thiol cysteines in proteins). S-nitrosylation affects phosphorylation, localization, and protein interactions. NO is classically described as a negative regulator of leukocyte adhesion to endothelial cells. However, agonists activating NO production induce a fast leukocyte adhesion, which suggests that NO might positively regulate leukocyte adhesion. We tested the hypothesis that eNOS-induced NO promotes leukocyte adhesion through the S-nitrosylation pathway. We stimulated leukocyte adhesion to endothelium in vitro and in vivo using tumor necrosis factor-alpha (TNF-alpha) as proinflammatory agonist. ICAM-1 changes were evaluated by immunofluorescence, subcellular fractionation, immunoprecipitation, and fluorescence recovery after photobleaching (FRAP). Protein kinase C sigma (PKC sigma) activity and S-nitrosylation were evaluated by Western blot analysis and biotin switch method, respectively. TNF-alpha, at short times of stimulation, activated the eNOS S-nitrosylation pathway and caused leukocyte adhesion to endothelial cells in vivo and in vitro. TNF-alpha-induced NO led to changes in ICAM-1 at the cell surface, which are characteristic of clustering. TNF-alpha-induced NO also produced S-nitrosylation and phosphorylation of PKCf, association of PKCf with ICAM-1, and ICAM-1 phosphorylation. The inhibition of PKCf blocked leukocyte adhesion induced by TNF-alpha. Mass spectrometry analysis of purified PKCf identified cysteine 503 as the only S-nitrosylated residue in the kinase domain of the protein. Our results reveal a new eNOS S-nitrosylation-dependent mechanism that induces leukocyte adhesion and suggests that S-nitrosylation of PKCf may be an important regulatory step in early leukocyte adhesion in inflammation.