Browsing by Author "Borkowski, J."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemOrbital and physical parameters of eclipsing binaries from the All-Sky Automated Survey catalogue - IV. A 0.61+0.45 M⊙ binary in a multiple system(2012) Helminiak, K. G.; Konacki, M.; Rozyczka, M.; Kaluzny, J.; Ratajczak, M.; Borkowski, J.; Sybilski, P.; Muterspaugh, M. W.; Reichart, D. E.; Ivarsen, K. M.; Haislip, J. B.; Crain, J. A.; Foster, A. C.; Nysewander, M. C.; LaCluyze, A. P.We present the orbital and physical parameters of a newly discovered low-mass detached eclipsing binary from the All-Sky Automated Survey (ASAS) data base: ASAS J0113283821.1 A, which is a member of a visual binary system with the secondary component separated by about 1.4 arcsec. The radial velocities have been calculated from the high-resolution spectra obtained with the 1.9-m Radcliffe telescope/Grating Instrument for Radiation Analysis with a Fibre-Fed Echelle (GIRAFFE) spectrograph, the 3.9-m Anglo-Australian Telescope (AAT)/University College London Echelle Spectrograph (UCLES) and the 3.0-m Shane telescope/Hamilton Spectrograph (HamSpec) on the basis of the todcor technique and the positions of the Ha emission lines. For the analysis, we have used V- and I-band photometry obtained with the 1.0-m Elizabeth telescope and the 0.41-m Panchromatic Robotic Optical Monitoring and Polarimetry Telescopes (PROMPT), supplemented with the publicly available ASAS light curve of the system. We have found that ASAS J0113283821.1 A is composed of two late-type dwarfs, which have masses of M1 = 0.612 +/- 0.030 M? and M2 = 0.445 +/- 0.019 M? and radii of R1 = 0.596 +/- 0.020 R? and R2 = 0.445 +/- 0.024 R?. Both show a substantial level of activity, which manifests in strong Ha and H beta emission and the presence of cool spots. The influence of the third light on the eclipsing pair properties has also been evaluated and the photometric properties of component B have been derived. A comparison with several popular stellar evolution models shows that the system is on its main-sequence evolution stage and that it is probably more metal-rich than the Sun. We have also found several clues to suggest that component B itself is a binary composed of two nearly identical similar to 0.5-M? stars.
- ItemSensitivity of the Cherenkov Telescope Array to TeV photon emission from the Large Magellanic Cloud(2023) Acharyya, A.; Adam, R.; Aguasca-Cabot, A.; Agudo, I.; Aguirre-Santaella, A.; Alfaro, J.; Aloisio, R.; Alves Batista, R.; Amato, E.; Anguner, E. O.; Aramo, C.; Arcaro, C.; Asano, K.; Aschersleben, J.; Ashkar, H.; Backes, M.; Baktash, A.; Balazs, C.; Balbo, M.; Ballet, J.; Bamba, A.; Baquero Larriva, A.; Martins, V. Barbosa; Barres de Almeida, U.; Barrio, J. A.; Bastieri, D.; Batista, P.; Batkovic, I.; Baxter, J. R.; Becerra Gonzalez, J.; Tjus, J. Becker; Benbow, W.; Bernardini, E.; Bernardos Martin, M. I.; Bernete Medrano, J.; Berti, A.; Bertucci, B.; Beshley, V.; Bhattacharjee, P.; Bhattacharyya, S.; Bigongiari, C.; Biland, A.; Bissaldi, E.; Bocchino, F.; Bordas, P.; Borkowski, J.; Bottacini, E.; Bottcher, M.; Bradascio, F.; Brown, A. M.; Bulgarelli, A.; Burmistrov, L.; Caroff, S.; Carosi, A.; Carquin, E.; Casanova, S.; Cascone, E.; Cassol, F.; Cerruti, M.; Chadwick, P.; Chaty, S.; Chen, A.; Chiavassa, A.; Chytka, L.; Conforti, V.; Cortina, J.; Costa, A.; Costantini, H.; Cotter, G.; Crestan, S.; Cristofari, P.; D'Ammando, F.; Dalchenko, M.; Dazzi, F.; De Angelis, A.; De Caprio, V.; de Gouveia Dal Pino, E. M.; De Martino, D.; de Naurois, M.; de Souza, V.; del Valle, M. V.; Delgado Giler, A. G.; Delgado, C.; della Volpe, D.; Depaoli, D.; Di Girolamo, T.; Di Piano, A.; Di Pierro, F.; Di Tria, R.; Di Venere, L.; Diebold, S.; Doro, M.; Dumora, D.; Dwarkadas, V. V.; Eckner, C.; Egberts, K.; Emery, G.; Escudero, J.; Falceta-Goncalves, D.; Fedorova, E.; Fegan, S.; Feng, Q.; Ferenc, D.; Ferrand, G.; Fiandrini, E.; Filipovic, M.; Fioretti, V.; Foffano, L.; Fontaine, G.; Fukui, Y.; Gaggero, D.; Galanti, G.; Galaz, G.; Gallozzi, S.; Gammaldi, V.; Garczarczyk, M.; Gasbarra, C.; Gasparrini, D.; Ghalumyan, A.; Giarrusso, M.; Giavitto, G.; Giglietto, N.; Giordano, F.; Giuliani, A.; Glicenstein, J. -F.; Goldoni, P.; Goulart Coelho, J.; Granot, J.; Green, D.; Green, J. G.; Grondin, M. -H.; Gueta, O.; Hadasch, D.; Hamal, P.; Hassan, T.; Hayashi, K.; Heller, M.; Hernandez Cadena, S.; Hiroshima, N.; Hnatyk, B.; Hnatyk, R.; Hofmann, W.; Holder, J.; Holler, M.; Horan, D.; Horvath, P.; Hrabovsky, M.; Hutten, M.; Iarlori, M.; Inada, T.; Incardona, F.; Inoue, S.; Iocco, F.; Jamrozy, M.; Jin, W.; Jung-Richardt, I.; Jurysek, J.; Kantzas, D.; Karas, V.; Katagiri, H.; Kerszberg, D.; Knodlseder, J.; Komin, N.; Kornecki, P.; Kosack, K.; Kowal, G.; Kubo, H.; Lamastra, A.; Lapington, J.; Lemoine-Goumard, M.; Lenain, J. -P.; Leone, F.; Leto, G.; Leuschner, F.; Lindfors, E.; Lohse, T.; Lombardi, S.; Longo, F.; Lopez-Coto, R.; Lopez-Oramas, A.; Loporchio, S.; Luque-Escamilla, P. L.; Macias, O.; Majumdar, P.; Mandat, D.; Mangano, S.; Manico, G.; Mariotti, M.; Marquez, P.; Marsella, G.; Marti, J.; Martin, P.; Martinez, M.; Mazin, D.; Menchiari, S.; Meyer, D. M. -A.; Miceli, D.; Miceli, M.; Michalowski, J.; Mitchell, A.; Moderski, R.; Mohrmann, L.; Molero, M.; Molina, E.; Montaruli, T.; Moralejo, A.; Morcuende, D.; Morselli, A.; Moulin, E.; Moya, V.; Mukherjee, R.; Munari, K.; Muraczewski, A.; Nagataki, S.; Nakamori, T.; Nayak, A.; Niemiec, J.; Nievas, M.; Nikolajuk, M.; Nishijima, K.; Noda, K.; Nosek, D.; Novosyadlyj, B.; Nozaki, S.; Ohishi, M.; Ohm, S.; Okumura, A.; Olmi, B.; Ong, R. A.; Orienti, M.; Orito, R.; Orlandini, M.; Orlando, E.; Orlando, S.; Ostrowski, M.; Oya, I.; Pagliaro, A.; Palatka, M.; Pantaleo, F. R.; Paoletti, R.; Paredes, J. M.; Parmiggiani, N.; Patricelli, B.; Pech, M.; Pecimotika, M.; Persic, M.; Petruk, O.; Pierre, E.; Pietropaolo, E.; Pirola, G.; Pohl, M.; Prandini, E.; Priyadarshi, C.; Puhlhofer, G.; Pumo, M. L.; Punch, M.; Queiroz, F. S.; Quirrenbach, A.; Raino, S.; Rando, R.; Razzaque, S.; Reimer, A.; Reimer, O.; Reposeur, T.; Ribo, M.; Richtler, T.; Rico, J.; Rieger, F.; Rigoselli, M.; Rizi, V.; Roache, E.; Fernandez, G. Rodriguez; Romano, P.; Romeo, G.; Rosado, J.; de Leon, A. Rosales; Rudak, B.; Rulten, C.; Sadeh, I.; Saito, T.; Sanchez-Conde, M.; Sano, H.; Santangelo, A.; Santos-Lima, R.; Sarkar, S.; Saturni, F. G.; Scherer, A.; Schovanek, P.; Schussler, F.; Schwanke, U.; Sergijenko, O.; Servillat, M.; Siejkowski, H.; Siqueira, C.; Spencer, S.; Stamerra, A.; Stanic, S.; Steppa, C.; Stolarczyk, T.; Suda, Y.; Tavernier, T.; Teshima, M.; Tibaldo, L.; Torres, D. F.; Tothill, N.; Vacula, M.; Vallage, B.; Vallania, P.; van Eldik, C.; Vazquez Acosta, M.; Vecchi, M.; Ventura, S.; Vercellone, S.; Viana, A.; Vigorito, C. F.; Vink, J.; Vitale, V.; Vodeb, V.; Vorobiov, S.; Vuillaume, T.; Wagner, S. J.; Walter, R.; White, M.; Wierzcholska, A.; Will, M.; Yamazaki, R.; Yang, L.; Yoshikoshi, T.; Zacharias, M.; Zaharijas, G.; Zavrtanik, D.; Zavrtanik, M.; Zdziarski, A. A.; Zhdanov, V. I.; Zietara, K.; Zivec, M.A deep survey of the Large Magellanic Cloud at & SIM;0.1-100 TeV photon energies with the Cherenkov Telescope Array is planned. We assess the detection prospects based on a model for the emission of the galaxy, comprising the four known TeV emitters, mock populations of sources, and interstellar emission on galactic scales. We also assess the detectability of 30 Doradus and SN 1987A, and the constraints that can be derived on the nature of dark matter. The survey will allow for fine spectral studies of N 157B, N 132D, LMC P3, and 30 Doradus C, and half a dozen other sources should be revealed, mainly pulsar-powered objects. The remnant from SN 1987A could be detected if it produces cosmic-ray nuclei with a flat power-law spectrum at high energies, or with a steeper index 2.3-2.4 pending a flux increase by a factor of >3-4 over & SIM;2015-2035. Large-scale interstellar emission remains mostly out of reach of the survey if its >10 GeV spectrum has a soft photon index & SIM;2.7, but degree-scale 0.1-10 TeV pion-decay emission could be detected if the cosmic-ray spectrum hardens above >100 GeV. The 30 Doradus star-forming region is detectable if acceleration efficiency is on the order of 1-10 per cent of the mechanical luminosity and diffusion is suppressed by two orders of magnitude within <100 pc. Finally, the survey could probe the canonical velocity-averaged cross-section for self-annihilation of weakly interacting massive particles for cuspy Navarro-Frenk-White profiles.
