Browsing by Author "Basoalto, Roque"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
- ItemA deep look into the rib cage compression technique in mechanically ventilated patients: a narrative review(2022) Jalil Contreras, Yorschua Frederick; Damiani, L. Felipe; Basoalto, Roque; Bachmman, María Consuelo; Bruhn, AlejandroDefective management of secretions is one of the most frequent complications in invasive mechanically ventilated patients. Clearance of secretions through chest physiotherapy is a critical aspect of the treatment of these patients. Manual rib cage compression is one of the most practiced chest physiotherapy techniques in ventilated patients; however, its impact on clinical outcomes remains controversial due to methodological issues and poor understanding of its action. In this review, we present a detailed analysis of the physical principles involved in rib cage compression technique performance, as well as the physiological effects observed in experimental and clinical studies, which show that the use of brief and vigorous rib cage compression, based on increased expiratory flows (expiratory-inspiratory airflow difference of > 33L/minute), can improve mucus movement toward the glottis. On the other hand, the use of soft and gradual rib cage compression throughout the whole expiratory phase does not impact the expiratory flows, resulting in ineffective or undesired effects in some cases. More physiological studies are needed to understand the principles of the rib cage compression technique in ventilated humans. However, according to the evidence, rib cage compression has more potential benefits than risks, so its implementation should be promoted.
- ItemReduction of Respiratory Rate in COVID-19-Associated ARDS(2022) Damiani, L. Felipe; Oviedo, Vanessa; Alegria, Leyla; Soto, Dagoberto; Basoalto, Roque; Consuelo Bachmann, M.; Jalil Contreras, Yorschua Frederick; Santis, Cesar; Vera, Magdalena; Retamal, Jaime; Bruhn, Alejandro; Bugedo, Guillermo
- ItemReply letter on “Physiological effects of high-flow nasal cannula oxygen therapy after extubation: a randomized crossover study”(2024) Basoalto, Roque; Bruhn, Alejandro
- ItemSpontaneous breathing promotes lung injury in an experimental model of alveolar collapse(2022) Bachmann, María Consuelo; Cruces, Pablo; Díaz, Franco; Oviedo, Vanessa; Goich, Mariela; Fuenzalida, José; Damiani Rebolledo, L. Felipe; Basoalto, Roque; Jalil, Yorschua F.; Carpio Cordero, David; Hamidi Vadeghani, Niki; Cornejo, Rodrigo; Rovegno Echavarria, Maximiliano; Bugedo Tarraza, Guillermo; Bruhn, Alejandro; Retamal Montes, JaimeVigorous spontaneous breathing has emerged as a promotor of lung damage in acute lung injury, an entity known as “patient self-inflicted lung injury”. Mechanical ventilation may prevent this second injury by decreasing intrathoracic pressure swings and improving regional air distribution. Therefore, we aimed to determine the effects of spontaneous breathing during the early stage of acute respiratory failure on lung injury and determine whether early and late controlled mechanical ventilation may avoid or revert these harmful effects. A model of partial surfactant depletion and lung collapse was induced in eighteen intubated pigs of 32 ±4 kg. Then, animals were randomized to (1) SB‐group: spontaneous breathing with very low levels of pressure support for the whole experiment (eight hours), (2) Early MV-group: controlled mechanical ventilation for eight hours, or (3) Late MV-group: first half of the experiment on spontaneous breathing (four hours) and the second half on controlled mechanical ventilation (four hours). Respiratory, hemodynamic, and electric impedance tomography data were collected. After the protocol, animals were euthanized, and lungs were extracted for histologic tissue analysis and cytokines quantification. SB-group presented larger esophageal pressure swings, progressive hypoxemia, lung injury, and more dorsal and inhomogeneous ventilation compared to the early MV-group. In the late MV-group switch to controlled mechanical ventilation improved the lung inhomogeneity and esophageal pressure swings but failed to prevent hypoxemia and lung injury. In a lung collapse model, spontaneous breathing is associated to large esophageal pressure swings and lung inhomogeneity, resulting in progressive hypoxemia and lung injury. Mechanical ventilation prevents these mechanisms of patient self-inflicted lung injury if applied early, before spontaneous breathing occurs, but not when applied late.