Browsing by Author "Barrado, D."
Now showing 1 - 7 of 7
Results Per Page
Sort Options
- ItemCALIFA, the Calar Alto Legacy Integral Field Area survey IV. Third public data release(2016) Sánchez Blazquez, Patricia; Sánchez, S.; Garcia, R.; Zibetti, S.; Mendoza, M.; Galbany, L.; Falcon, J.; Mast, D.; Aceituno, J.; Aguerri, J.; Alves, J.; Amorim, A.; Ascasibar, Y.; Barrado, D.; Barrera, J.; Bland, J.
- ItemKepler-539 : a young extrasolar system with two giant planets on wide orbits and in gravitational interaction(2016) Mancini, L.; Lillo, J.; Southworth, J.; Borsato, L.; Gandolfi, D.; Ciceri, S.; Barrado, D.; Brahm, R.; Henning, T.
- ItemPhysical parameters of late M-type members of Chamaeleon I and TW Hydrae Association: Dust settling, age dispersion and activity(2017) Bayo A.; Barrado, D.; Allard, F.; Henning, T.; Comerón, F.; Morales-Calderón, M.; Rajpurohit, A.S.; Peña Ramírez, Karla Yulien; Beamín, J.C.; Beamín, J.C.Although mid-to-late type M dwarfs are the most common stars in our stellar neighbourhood, our knowledge of these objects is still limited. Open questions include the evolution of their angular momentum, internal structures, dust settling in their atmospheres and age dispersion within populations. In addition, at young ages, late-type Ms have masses below the hydrogen burning limit and therefore are key objects in the debate on the brown dwarf mechanism of formation. In this work, we determine and study in detail the physical parameters of two samples of young, late M-type sources belonging to either the Chamaeleon I dark cloud or the TW Hydrae Association and compare them with the results obtained in the literature for other young clusters and also for older, field, dwarfs. We used multiwavelength photometry to construct and analyse SEDs to determine general properties of the photosphere and disc presence. We also used low-resolution optical and near-infrared spectroscopy to study activity, accretion, gravity and effective temperature sensitive indicators.We propose a Virtual Observatory-based spectral index that is both temperature and age sensitive.We derived physical parameters using independent techniques confirming the already common feature/problem of the age/luminosity spread. In particular, we highlight two brown dwarfs showing very similar temperatures but clearly different surface gravity (explained invoking extreme early accretion). We also show how, despite large improvement in the dust treatment in theoretical models, there is still room for further progress in the simultaneous reproduction of the optical and near-infrared features of these cold young objects.
- ItemThe Gaia-ESO Public Spectroscopic Survey: Implementation, data products, open cluster survey, science, and legacy(2022) Randich, S.; Gilmore, G.; Magrini, L.; Sacco, G. G.; Jackson, R. J.; Jeffries, R. D.; Worley, C. C.; Hourihane, A.; Gonneau, A.; Vazquez, C. Viscasillas; Franciosini, E.; Lewis, J. R.; Alfaro, E. J.; Allende Prieto, C.; Bensby, T.; Blomme, R.; Bragaglia, A.; Flaccomio, E.; Francois, P.; Irwin, M. J.; Koposov, S. E.; Korn, A. J.; Lanzafame, A. C.; Pancino, E.; Recio-Blanco, A.; Smiljanic, R.; Van Eck, S.; Zwitter, T.; Asplund, M.; Bonifacio, P.; Feltzing, S.; Binney, J.; Drew, J.; Ferguson, A. M. N.; Micela, G.; Negueruela, I; Prusti, T.; Rix, H-W; Vallenari, A.; Bayo, A.; Bergemann, M.; Biazzo, K.; Carraro, G.; Casey, A. R.; Damiani, F.; Frasca, A.; Heiter, U.; Hill, V; Jofre, P.; de Laverny, P.; Lind, K.; Marconi, G.; Martayan, C.; Masseron, T.; Monaco, L.; Morbidelli, L.; Prisinzano, L.; Sbordone, L.; Sousa, S. G.; Zaggia, S.; Adibekyan, V; Bonito, R.; Caffau, E.; Daflon, S.; Feuillet, D. K.; Gebran, M.; Gonzalez Hernandez, J., I; Guiglion, G.; Herrero, A.; Lobel, A.; Maiz Apellaniz, J.; Merle, T.; Mikolaitis, S.; Montes, D.; Morel, T.; Soubiran, C.; Spina, L.; Tabernero, H. M.; Tautvaisiene, G.; Traven, G.; Valentini, M.; Van der Swaelmen, M.; Villanova, S.; Wright, N. J.; Abbas, U.; Borsen-Koch, V. Aguirre; Alves, J.; Balaguer-Nunez, L.; Barklem, P. S.; Barrado, D.; Berlanas, S. R.; Binks, A. S.; Bressan, A.; Capuzzo-Dolcetta, R.; Casagrande, L.; Casamiquela, L.; Collins, R. S.; D'Orazi, V; Dantas, M. L. L.; Debattista, V. P.; Delgado-Mena, E.; Di Marcantonio, P.; Drazdauskas, A.; Evans, N. W.; Famaey, B.; Franchini, M.; Fremat, Y.; Friel, E. D.; Fu, X.; Geisler, D.; Gerhard, O.; Solares, E. A. Gonzalez; Grebel, E. K.; Gutierrez Albarran, M. L.; Hatzidimitriou, D.; Held, E., V; Jimenez-Esteban, F.; Jonsson, H.; Jordi, C.; Khachaturyants, T.; Kordopatis, G.; Kos, J.; Lagarde, N.; Mahy, L.; Mapelli, M.; Marfil, E.; Martell, S. L.; Messina, S.; Miglio, A.; Minchev, I; Moitinho, A.; Montalban, J.; Monteiro, M. J. P. F. G.; Morossi, C.; Mowlavi, N.; Mucciarelli, A.; Murphy, D. N. A.; Nardetto, N.; Ortolani, S.; Paletou, F.; Palous, J.; Paunzen, E.; Pickering, J. C.; Quirrenbach, A.; Fiorentin, P. Re; Read, J., I; Romano, D.; Ryde, N.; Sanna, N.; Santos, W.; Seabroke, G. M.; Spagna, A.; Steinmetz, M.; Stonkute, E.; Sutorius, E.; Thevenin, F.; Tosi, M.; Tsantaki, M.; Vink, J. S.; Wright, N.; Wyse, R. F. G.; Zoccali, M.; Zorec, J.; Zucker, D. B.; Walton, N. A.Context. In the last 15 years different ground-based spectroscopic surveys have been started (and completed) with the general aim of delivering stellar parameters and elemental abundances for large samples of Galactic stars, complementing Gaia astrometry. Among those surveys, the Gaia-ESO Public Spectroscopic Survey, the only one performed on a 8m class telescope, was designed to target 100 000 stars using FLAMES on the ESO VLT (both Giraffe and UVES spectrographs), covering all the Milky Way populations, with a special focus on open star clusters.
- ItemThe Gaia-ESO Public Spectroscopic Survey: Motivation, implementation, GIRAFFE data processing, analysis, and final data products☆(2022) Gilmore, G.; Randich, S.; Worley, C. C.; Hourihane, A.; Gonneau, A.; Sacco, G. G.; Lewis, J. R.; Magrini, L.; Francois, P.; Jeffries, R. D.; Koposov, S. E.; Bragaglia, A.; Alfaro, E. J.; Allende Prieto, C.; Blomme, R.; Korn, A. J.; Lanzafame, A. C.; Pancino, E.; Recio-Blanco, A.; Smiljanic, R.; Van Eck, S.; Zwitter, T.; Bensby, T.; Flaccomio, E.; Irwin, M. J.; Franciosini, E.; Morbidelli, L.; Damiani, F.; Bonito, R.; Friel, E. D.; Vink, J. S.; Prisinzano, L.; Abbas, U.; Hatzidimitriou, D.; Held, E., V; Jordi, C.; Paunzen, E.; Spagna, A.; Jackson, R. J.; Maiz Apellaniz, J.; Asplund, M.; Bonifacio, P.; Feltzing, S.; Binney, J.; Drew, J.; Ferguson, A. M. N.; Micela, G.; Negueruela, I; Prusti, T.; Rix, H-W; Vallenari, A.; Bergemann, M.; Casey, A. R.; de Laverny, P.; Frasca, A.; Hill, V; Lind, K.; Sbordone, L.; Sousa, S. G.; Adibekyan, V; Caffau, E.; Daflon, S.; Feuillet, D. K.; Gebran, M.; Gonzalez Hernandez, J., I; Guiglion, G.; Herrero, A.; Lobel, A.; Montes, D.; Morel, T.; Ruchti, G.; Soubiran, C.; Tabernero, H. M.; Tautvaisiene, G.; Traven, G.; Valentini, M.; Van der Swaelmen, M.; Villanova, S.; Vazquez, C. Viscasillas; Bayo, A.; Biazzo, K.; Carraro, G.; Edvardsson, B.; Heiter, U.; Jofre, P.; Marconi, G.; Martayan, C.; Masseron, T.; Monaco, L.; Walton, N. A.; Zaggia, S.; Borsen-Koch, V. Aguirre; Alves, J.; Balaguer-Nunez, L.; Barklem, P. S.; Barrado, D.; Bellazzini, M.; Berlanas, S. R.; Binks, A. S.; Bressan, A.; Capuzzo-Dolcetta, R.; Casagrande, L.; Casamiquela, L.; Collins, R. S.; D'Orazi, V; Dantas, M. L. L.; Debattista, V. P.; Delgado-Mena, E.; Di Marcantonio, P.; Drazdauskas, A.; Evans, N. W.; Famaey, B.; Franchini, M.; Fremat, Y.; Fu, X.; Geisler, D.; Gerhard, O.; Solares, E. A. Gonzalez; Grebel, E. K.; Gutierrez Albarran, M. L.; Jimenez-Esteban, F.; Jonsson, H.; Khachaturyants, T.; Kordopatis, G.; Kos, J.; Lagarde, N.; Ludwig, H-G; Mahy, L.; Mapelli, M.; Marfil, E.; Martell, S. L.; Messina, S.; Miglio, A.; Minchev, I; Moitinho, A.; Montalban, J.; Monteiro, M. J. P. F. G.; Morossi, C.; Mowlavi, N.; Mucciarelli, A.; Murphy, D. N. A.; Nardetto, N.; Ortolani, S.; Paletou, F.; Palous, J.; Pickering, J. C.; Quirrenbach, A.; Fiorentin, P. Re; Read, J., I; Romano, D.; Ryde, N.; Sanna, N.; Santos, W.; Seabroke, G. M.; Spina, L.; Steinmetz, M.; Stonkute, E.; Sutorius, E.; Thevenin, F.; Tosi, M.; Tsantaki, M.; Wright, N.; Wyse, R. F. G.; Zoccali, M.; Zorec, J.; Zucker, D. B.Context. The Gaia-ESO Public Spectroscopic Survey is an ambitious project designed to obtain astrophysical parameters and elemental abundances for 100 000 stars, including large representative samples of the stellar populations in the Galaxy, and a well-defined sample of 60 (plus 20 archive) open clusters. We provide internally consistent results calibrated on benchmark stars and star clusters, extending across a very wide range of abundances and ages. This provides a legacy data set of intrinsic value, and equally a large wide-ranging dataset that is of value for the homogenisation of other and future stellar surveys and Gaia's astrophysical parameters. Aims. This article provides an overview of the survey methodology, the scientific aims, and the implementation, including a description of the data processing for the GIRAFFE spectra. A companion paper introduces the survey results. Methods. Gaia-ESO aspires to quantify both random and systematic contributions to measurement uncertainties. Thus, all available spectroscopic analysis techniques are utilised, each spectrum being analysed by up to several different analysis pipelines, with considerable effort being made to homogenise and calibrate the resulting parameters. We describe here the sequence of activities up to delivery of processed data products to the ESO Science Archive Facility for open use. Results. The Gaia-ESO Survey obtained 202 000 spectra of 115 000 stars using 340 allocated VLT nights between December 2011 and January 2018 from GIRAFFE and UVES. Conclusions. The full consistently reduced final data set of spectra was released through the ESO Science Archive Facility in late 2020, with the full astrophysical parameters sets following in 2022. A companion article reviews the survey implementation, scientific highlights, the open cluster survey, and data products.
- ItemThe EBLM project - VIII. First results for M-dwarf mass, radius, and effective temperature measurements using CHEOPS light curves(2021) Swayne, M., I; Maxted, P. F. L.; Triaud, A. H. M. J.; Sousa, S. G.; Broeg, C.; Floren, H-G; Guterman, P.; Simon, A. E.; Boisse, I; Bonfanti, A.; Martin, D.; Santerne, A.; Salmon, S.; Standing, M. R.; Van Grootel, V.; Wilson, T. G.; Alibert, Y.; Alonso, R.; Anglada Escude, G.; Asquier, J.; Barczy, T.; Barrado, D.; Barros, S. C. C.; Battley, M.; Baumjohann, W.; Beck, M.; Beck, T.; Bekkelien, A.; Benz, W.; Billot, N.; Bonfils, X.; Brandeker, A.; Busch, M-D; Cabrera, J.; Charnoz, S.; Cameron, A. Collier; Csizmadia, Sz; Davies, M. B.; Deleuil, M.; Deline, A.; Delrez, L.; Demangeon, O. D. S.; Demory, B-O; Dransfield, G.; Ehrenreich, D.; Erikson, A.; Fortier, A.; Fossati, L.; Fridlund, M.; Futyan, D.; Gandolfi, D.; Gillon, M.; Guedel, M.; Hebrard, G.; Heidari, N.; Hellier, C.; Heng, K.; Hobson, M.; Hoyer, S.; Isaak, K. G.; Kiss, L.; Hodzic, V. Kunovac; Lalitha, S.; Laskar, J.; des Etangs, A. Lecavelier; Lendl, M.; Lovis, C.; Magrin, D.; Marafatto, L.; McCormac, J.; Miller, N.; Nascimbeni, V; Olofsson, G.; Ottensamer, R.; Pagano, I; Palle, E.; Peter, G.; Piotto, G.; Pollacco, D.; Queloz, D.; Ragazzoni, R.; Rando, N.; Rauer, H.; Ribas, I; Santos, N. C.; Scandariato, G.; Segransan, D.; Smith, A. M. S.; Steinberger, M.; Steller, M.; Szabo, Gy M.; Thomas, N.; Udry, S.; Walter, I; Walton, N. A.; Willett, E.The accuracy of theoretical mass, radius, and effective temperature values for M-dwarf stars is an active topic of debate. Differences between observed and theoretical values have raised the possibility that current theoretical stellar structure and evolution models are inaccurate towards the low-mass end of the main sequence. To explore this issue, we use the CHEOPS satellite to obtain high-precision light curves of eclipsing binaries with low-mass stellar companions. We use these light curves combined with the spectroscopic orbit for the solar-type companion to measure the mass, radius, and effective temperature of the M-dwarf star. Here, we present the analysis of three eclipsing binaries. We use the pycheops data analysis software to fit the observed transit and eclipse events of each system. Two of our systems were also observed by the TESS satellite - we similarly analyse these light curves for comparison. We find consistent results between CHEOPS and TESS, presenting three stellar radii and two stellar effective temperature values of low-mass stellar objects. These initial results from our on-going observing programme with CHEOPS show that we can expect to have similar to 24 new mass, radius, and effective temperature measurements for very low-mass stars within the next few years.
- ItemThe Gaia Ultracool Dwarf Sample. I. Known L and T dwarfs and the first Gaia data release(2017) Smart, R. L.; Marocco, F.; Caballero, J. A.; Jones, H. R. A.; Barrado, D.; Beamin Muhlenbrock, Juan Carlos; Pinfield, D. J.; Sarro, L. M.We identify and investigate known ultracool stars and brown dwarfs that are being observed or indirectly constrained by the Gaia mission. These objects will be the core of the Gaia ultracool dwarf sample composed of all dwarfs later than M7 that Gaia will provide direct or indirect information on. We match known L and T dwarfs to the Gaia first data release, the Two Micron All Sky Survey and the Wide-field Infrared Survey Explorer AllWISE survey and examine the Gaia and infrared colours, along with proper motions, to improve spectral typing, identify outliers and find mismatches. There are 321 L and T dwarfs observed directly in the Gaia first data release, of which 10 are later than L7. This represents 45 % of all the known LT dwarfs with estimated Gaia G magnitudes brighter than 20.3 mag. We determine proper motions for the 321 objects from Gaia and the Two Micron All Sky Survey positions. Combining the Gaia and infrared magnitudes provides useful diagnostic diagrams for the determination of L and T dwarf physical parameters. We then search the Tycho-Gaia astrometric solution Gaia first data release subset to find any objects with common proper motions to known L and T dwarfs and a high probability of being related. We find 15 new candidate common proper motion systems