• La Universidad
    • Historia
    • Rectoría
    • Autoridades
    • Secretaría General
    • Pastoral UC
    • Organización
    • Hechos y cifras
    • Noticias UC
  • 2011-03-15-13-28-09
  • Facultades
    • Agronomía e Ingeniería Forestal
    • Arquitectura, Diseño y Estudios Urbanos
    • Artes
    • Ciencias Biológicas
    • Ciencias Económicas y Administrativas
    • Ciencias Sociales
    • College
    • Comunicaciones
    • Derecho
    • Educación
    • Filosofía
    • Física
    • Historia, Geografía y Ciencia Política
    • Ingeniería
    • Letras
    • Matemáticas
    • Medicina
    • Química
    • Teología
    • Sede regional Villarrica
  • 2011-03-15-13-28-09
  • Organizaciones vinculadas
  • 2011-03-15-13-28-09
  • Bibliotecas
  • 2011-03-15-13-28-09
  • Mi Portal UC
  • 2011-03-15-13-28-09
  • Correo UC
- Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log in
    Log in
    Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of DSpace
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log in
    Log in
    Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Barnhill, Raymond L."

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Dermatologist-like explainable AI enhances trust and confidence in diagnosing melanoma
    (2024) Chanda, Tirtha; Hauser, Katja; Hobelsberger, Sarah; Bucher, Tabea-Clara; Garcia, Carina Nogueira; Wies, Christoph; Kittler, Harald; Tschandl, Philipp; Navarrete-Dechent, Cristian; Podlipnik, Sebastian; Chousakos, Emmanouil; Crnaric, Iva; Majstorovic, Jovana; Alhajwan, Linda; Foreman, Tanya; Peternel, Sandra; Sarap, Sergei; Ozdemir, Irem; Barnhill, Raymond L.; Llamas-Velasco, Mar; Poch, Gabriela; Korsing, Soeren; Sondermann, Wiebke; Gellrich, Frank Friedrich; Heppt, Markus V.; Erdmann, Michael; Haferkamp, Sebastian; Drexler, Konstantin; Goebeler, Matthias; Schilling, Bastian; Utikal, Jochen S.; Ghoreschi, Kamran; Froehling, Stefan; Krieghoff-Henning, Eva; Brinker, Titus J.
    Artificial intelligence (AI) systems have been shown to help dermatologists diagnose melanoma more accurately, however they lack transparency, hindering user acceptance. Explainable AI (XAI) methods can help to increase transparency, yet often lack precise, domain-specific explanations. Moreover, the impact of XAI methods on dermatologists' decisions has not yet been evaluated. Building upon previous research, we introduce an XAI system that provides precise and domain-specific explanations alongside its differential diagnoses of melanomas and nevi. Through a three-phase study, we assess its impact on dermatologists' diagnostic accuracy, diagnostic confidence, and trust in the XAI-support. Our results show strong alignment between XAI and dermatologist explanations. We also show that dermatologists' confidence in their diagnoses, and their trust in the support system significantly increase with XAI compared to conventional AI. This study highlights dermatologists' willingness to adopt such XAI systems, promoting future use in the clinic.
  • No Thumbnail Available
    Item
    International Skin Imaging Collaboration-Designated Diagnoses (ISIC-DX): Consensus terminology for lesion diagnostic labeling
    (2024) Scope, Alon; Liopyris, Konstantinos; Weber, Jochen; Barnhill, Raymond L.; Braun, Ralph P.; Curiel-Lewandrowski, Clara N.; Elder, David E.; Ferrara, Gerardo; Grant-Kels, Jane M.; Jeunon, Thiago; Lallas, Aimilios; Lin, Jennifer Y.; Marchetti, Michael A.; Marghoob, Ashfaq A.; Navarrete-Dechent, Cristian; Pellacani, Giovanni; Soyer, Hans Peter; Stratigos, Alexander; Thomas, Luc; Kittler, Harald; Rotemberg, Veronica; Halpern, Allan C.
    Background: A common terminology for diagnosis is critically important for clinical communication, education, research and artificial intelligence. Prevailing lexicons are limited in fully representing skin neoplasms. Objectives: To achieve expert consensus on diagnostic terms for skin neoplasms and their hierarchical mapping. Methods: Diagnostic terms were extracted from textbooks, publications and extant diagnostic codes. Terms were hierarchically mapped to super-categories (e.g. 'benign') and cellular/tissue-differentiation categories (e.g. 'melanocytic'), and appended with pertinent-modifiers and synonyms. These terms were evaluated using a modified-Delphi consensus approach. Experts from the International-Skin-Imaging-Collaboration (ISIC) were surveyed on agreement with terms and their hierarchical mapping; they could suggest modifying, deleting or adding terms. Consensus threshold was >75% for the initial rounds and >50% for the final round. Results: Eighteen experts completed all Delphi rounds. Of 379 terms, 356 (94%) reached consensus in round one. Eleven of 226 (5%) benign-category terms, 6/140 (4%) malignant-category terms and 6/13 (46%) indeterminate-category terms did not reach initial agreement. Following three rounds, final consensus consisted of 362 terms mapped to 3 super-categories and 41 cellular/tissue-differentiation categories. Conclusions: We have created, agreed upon, and made public a taxonomy for skin neoplasms and their hierarchical mapping. Further study will be needed to evaluate the utility and completeness of the lexicon.

Bibliotecas - Pontificia Universidad Católica de Chile- Dirección oficinas centrales: Av. Vicuña Mackenna 4860. Santiago de Chile.

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback