• La Universidad
    • Historia
    • Rectoría
    • Autoridades
    • Secretaría General
    • Pastoral UC
    • Organización
    • Hechos y cifras
    • Noticias UC
  • 2011-03-15-13-28-09
  • Facultades
    • Agronomía e Ingeniería Forestal
    • Arquitectura, Diseño y Estudios Urbanos
    • Artes
    • Ciencias Biológicas
    • Ciencias Económicas y Administrativas
    • Ciencias Sociales
    • College
    • Comunicaciones
    • Derecho
    • Educación
    • Filosofía
    • Física
    • Historia, Geografía y Ciencia Política
    • Ingeniería
    • Letras
    • Matemáticas
    • Medicina
    • Química
    • Teología
    • Sede regional Villarrica
  • 2011-03-15-13-28-09
  • Organizaciones vinculadas
  • 2011-03-15-13-28-09
  • Bibliotecas
  • 2011-03-15-13-28-09
  • Mi Portal UC
  • 2011-03-15-13-28-09
  • Correo UC
- Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log in
    Log in
    Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of DSpace
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log in
    Log in
    Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Banduc, Tomás"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    The Fibrotic Kernel Signature: Simulation-Free Prediction of Atrial Fibrillation
    (2023) Sahli Costabal, Francisco; Banduc, Tomás; Gander, Lia; Pezzuto, Simone
    We propose a fast classifier that is able to predict atrial fibrillation inducibility in patient-specific cardiac models. Our classifier is general and it does not require re-training for new anatomies, fibrosis patterns, and ablation lines. This is achieved by training the classifier on a variant of the Heat Kernel Signature (HKS). Here, we introduce the “fibrotic kernel signature” (FKS), which extends the HKS by incorporating fibrosis information. The FKS is fast to compute, when compared to standard cardiac models like the monodomain equation. We tested the classifier on 9 combinations of ablation lines and fibrosis patterns. We achieved maximum balanced accuracies with the classifiers ranging from 75.8% to 95.8%, when tested on single points. The classifier is also able to predict very well the overall inducibility of the model. We think that our classifier can speed up the calculation of inducibility maps in a way that is crucial to create better personalized ablation treatments within the time constraints of the clinical setting.

Bibliotecas - Pontificia Universidad Católica de Chile- Dirección oficinas centrales: Av. Vicuña Mackenna 4860. Santiago de Chile.

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback