Browsing by Author "Bakos, Gaspar A."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemA GROUND-BASED OPTICAL TRANSMISSION SPECTRUM OF WASP-6b(2013) Jordán Colzani, Andrés Cristóbal; Espinoza Pérez, Néstor; Rabus, Markus; Eyheramendy Duerr, Susana; Sing, David K.; Desert, Jean Michel; Bakos, Gaspar A.; Fortney, Jonathan J.; López Morales, Mercedes Pierre F. L. Maxted.
- ItemA Pair of Warm Giant Planets near the 2:1 Mean Motion Resonance around the K-dwarf Star TOI-2202*(2021) Trifonov, Trifon; Brahm, Rafael; Espinoza, Nestor; Henning, Thomas; Jordan, Andres; Nesvorny, David; Dawson, Rebekah I.; Lissauer, Jack J.; Lee, Man Hoi; Kossakowski, Diana; Rojas, Felipe I.; Hobson, Melissa J.; Sarkis, Paula; Schlecker, Martin; Bitsch, Bertram; Bakos, Gaspar A.; Barbieri, Mauro; Bhatti, W.; Butler, R. Paul; Crane, Jeffrey D.; Nandakumar, Sangeetha; Diaz, Matias R.; Shectman, Stephen; Teske, Johanna; Torres, Pascal; Suc, Vincent; Vines, Jose I.; Wang, Sharon X.; Ricker, George R.; Shporer, Avi; Vanderburg, Andrew; Dragomir, Diana; Vanderspek, Roland; Burke, Christopher J.; Daylan, Tansu; Shiao, Bernie; Jenkins, Jon M.; Wohler, Bill; Seager, Sara; Winn, Joshua N.TOI-2202 b is a transiting warm Jovian-mass planet with an orbital period of P = 11.91 days identified from the Full Frame Images data of five different sectors of the TESS mission. Ten TESS transits of TOI-2202 b combined with three follow-up light curves obtained with the CHAT robotic telescope show strong transit timing variations (TTVs) with an amplitude of about 1.2 hr. Radial velocity follow-up with FEROS, HARPS, and PFS confirms the planetary nature of the transiting candidate (a (b) = 0.096 +/- 0.001 au, m (b) = 0.98 +/- 0.06 M (Jup)), and a dynamical analysis of RVs, transit data, and TTVs points to an outer Saturn-mass companion (a (c) = 0.155 +/- 0.002 au, m (c) = 0.37 +/- 0.10 M (Jup)) near the 2:1 mean motion resonance. Our stellar modeling indicates that TOI-2202 is an early K-type star with a mass of 0.82 M (circle dot), a radius of 0.79 R (circle dot), and solar-like metallicity. The TOI-2202 system is very interesting because of the two warm Jovian-mass planets near the 2:1 mean motion resonance, which is a rare configuration, and their formation and dynamical evolution are still not well understood.